
MIPS32® I7200 Multiprocessing System
Programmer's Guide

Revision: 01.20
20/04/2018

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Tech, LLC, a Wave Computing company (“MIPS”) and MIPS’
affiliates as applicable. Any copying, reproducing, modifying or use of this information (in whole or in part) that is not expressly
permitted in writing by MIPS or MIPS’ affiliates as applicable or an authorized third party is strictly prohibited. At a minimum,
this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties
and fines. Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word
format) is subject to use and distribution restrictions that are independent of and supplemental to any and all confidentiality
restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD
PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS (AND MIPS’ AFFILIATES AS APPLICABLE)
reserve the right to change the information contained in this document to improve function, design or otherwise.

MIPS and MIPS’ affiliates do not assume any liability arising out of the application or use of this information, or of any error or
omission in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the
implied warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any
written license agreement from MIPS or an authorized third party, the furnishing of this document does not give recipient any
license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in
violation of the law of any country or international law, regulation, treaty, Executive Order, statute, amendments or
supplements thereto. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained in
this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software,
commercial computer software documentation or other commercial items. If the user of this information, or any related
documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the United
States government ("Government"), the use, duplication, reproduction, release, modification, disclosure, or transfer of this
information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212
for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this
information by the Government is further restricted in accordance with the terms of the license agreement(s) and/or applicable
contract terms and conditions covering this information from MIPS Technologies or an authorized third party.

MIPS, MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPSr3, MIPS32, MIPS64, microMIPS32, microMIPS64, MIPS-3D, MIPS16,
MIPS16e, MIPS-Based, MIPSsim, MIPSpro, MIPS-VERIFIED, Aptiv logo, microAptiv logo, interAptiv logo, microMIPS logo, MIPS
Technologies logo, MIPS-VERIFIED logo, proAptiv logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, M14K,
5K, 5Kc, 5Kf, 24K, 24Kc, 24Kf, 24KE, 24KEc, 24KEf, 34K, 34Kc, 34Kf, 74K, 74Kc, 74Kf, 1004K, 1004Kc, 1004Kf, 1074K, 1074Kc,
1074Kf, R3000, R4000, R5000, Aptiv, ASMACRO, Atlas, "At the core of the user experience.", BusBridge, Bus Navigator, CLAM,
CorExtend, CoreFPGA, CoreLV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2 NAVIGATOR, HyperDebug,
HyperJTAG, IASim, iFlowtrace, interAptiv, JALGO, Logic Navigator, Malta, MDMX, MED, MGB, microAptiv, microMIPS, Navigator,
OCI, PDtrace, the Pipeline, proAptiv, Pro Series, SEAD-3, SmartMIPS, SOC-it, and YAMON are trademarks or registered
trademarks of MIPS and MIPS’ affiliates as applicable in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

 Contents — Revision 01.20

Contents
List of Figures.. vii

List of Tables... ix

1 MIPS32 I7200 Multiprocessing System Programmer's Guide.............14
1.1 Overview.. 15
1.2 I7200 Core Block Diagram.. 15

2 Memory Management Unit...17
2.1 Memory Management Unit Architecture..17

2.1.1 Translation Lookaside Buffer (TLB)... 17
2.1.2 Joint TLB (JTLB)..18
2.1.3 Instruction TLB (ITLB)..18
2.1.4 Data TLB (DTLB)...19

2.2 TLB Instructions...19
2.3 Relationship of TLB Entries and CP0 Registers... 19

2.3.1 TLB Tag Entry..20
2.3.2 TLB Data Entry.. 21
2.3.3 Address Translation Examples.. 22

2.4 MMU Programming..24
2.4.1 Indexing the JTLB..24
2.4.2 Hardwiring JTLB Entries.. 25
2.4.3 JTLB Random Replacement..25

2.5 TLB Exception Handler..26
2.6 TLB Duplicate Entries..27
2.7 Modes of Operation...28

3 Enhanced Virtual Address... 29
3.1 Virtual and Physical Address Maps...29
3.2 Initial EVA Configuration Parameters.. 31
3.3 Programmable Segmentation Control... 31
3.4 Boot Exception Vector Relocation in Kernel Mode... 38

3.4.1 Boot Configurations... 38
3.4.2 Registers and Fields Used to Support Boot Exception Vector Relocation.....................38
3.4.3 Example Mapping of the Boot Exception Vector in the EVA Configuration....................40
3.4.4 Defining the Boot Exception Vector Overlay Region... 41

4 Memory Protection Unit... 47
4.1 Default Segment Control Overview... 47
4.2 Regions Overview..48
4.3 CDMM Configuration Registers...49
4.4 MPU Configuration Registers.. 50
4.5 Segments... 51
4.6 Regions.. 52

4.6.1 MPU Region Address and Control Registers.. 55
4.7 MPU and Segment Control... 61

 iii

 Contents — Revision 01.20

5 Caches... 63
5.1 Caches Substem Overview... 63

5.1.1 L1 Instruction Cache..64
5.1.2 L1 Data Cache...67
5.1.3 L1 Instruction and Data Cache Software Testing.. 69
5.1.4 Batch Cache Operation... 70
5.1.5 L2 Cache..71

5.2 Cache Coherency Attributes..74
5.3 Register Interface.. 75

5.3.1 L1 Instruction Cache CP0 Register Interface.. 75
5.3.2 L1 Data Cache CP0 Register Interface...76
5.3.3 L2 Cache CM GCR Control Registers.. 77

5.4 Cache Initialization Routines... 77
5.4.1 L1 Instruction Cache Initialization..77
5.4.2 L1 Data Cache Initialization...77
5.4.3 L2 Cache Initialization..78

5.5 Setting the Memory Space Cache Coherency..78

6 Exceptions... 79
6.1 Exception Processing Overview.. 79
6.2 Exception Vector Locations... 80
6.3 Defining the Exception Vector Locations...81
6.4 Core-Level Exception Priorities... 86
6.5 General Exception Processing.. 89
6.6 Debug Exception Processing.. 90
6.7 Interrupt Mode Code Examples.. 91

7 Coherence Manager..96
7.1 Global Control Registers (GCR)..97
7.2 Programming the GCRs.. 98

7.2.1 Finding the Number of Regions, IOCUs, and Cores in the System...............................98
7.2.2 Restricting Access to GCRs from Cores... 99
7.2.3 Programming Controller Base Addresses... 99
7.2.4 CM Error Detection..105
7.2.5 Programming Individual Core Coherency Configuration... 111

7.3 CM Performance Counters..113
7.3.1 CM Performance Counter Functionality...113
7.3.2 CM Performance Counter Usage Models..114
7.3.3 CM Performance Counter Event Types and Qualifiers..115

8 Power Mangement and the Cluster Power Controller.......................125
8.1 About the Cluster Power Controller.. 125

8.1.1 I7200 Power Domains... 125
8.1.2 Operating Level Transitions...126

8.2 CPC Register Programming.. 128
8.2.1 CPC Address Map...128

9 Global Interrupt Controller...133
9.1 GIC Terminology.. 133
9.2 GIC Features... 133

iv

 Contents — Revision 01.20

9.3 GIC Address Map Overview..134
9.4 GIC Programming..137

9.4.1 Setting the GIC Base Address and Enabling the GIC...137
9.4.2 Configuring Interrupt Sources..137
9.4.3 Interrupt Routing.. 139
9.4.4 Enabling, Disabling, and Polling Interrupts..141
9.4.5 Inter-processor Interrupts...141
9.4.6 Local Device Interrupt Configuration... 144
9.4.7 Local Interrupt Routing.. 149
9.4.8 EIC Mode Setting.. 155
9.4.9 Enabling, Disabling, and Polling Local Interrupts.. 155
9.4.10 Debug Interrupt Generation... 156

9.5 Shared Register Set.. 157
9.6 GIC User-Mode Visible Section...162

10 Policy Manager... 163
10.1 Thread Scheduling Unit...163
10.2 Policy Manager Modes..163

10.2.1 QoS Mode..163
10.2.2 Weighted Round-Robin Policy Mode...165
10.2.3 CP0 Register Interface.. 165

11 Inter-Thread Communication Unit...167
11.1 ITC Address Space..167
11.2 ITC Storage..168
11.3 ITC Views...169
11.4 Programming Examples...171

11.4.1 Configuring the ITC Block..172
11.4.2 Set up a Semaphore Cell.. 173
11.4.3 Use the ITC for Semaphores...173

12 Instruction, Data, and Unified Scratch Pad RAM.............................175
12.1 DSPRAM Prediction Buffer..175
12.2 SPRAM Examples... 175
12.3 SPRAM Macros... 177

13 Hardware and Software Initialization..179
13.1 Hardware-Initialized Processor State.. 179
13.2 Software-Initialized Processor State..180
13.3 Boot and CMP Bringup... 181
13.4 Hazard Barrier Instructions..181

14 Multithreading Overview.. 184
14.1 Thread Context Resource Allocation...184
14.2 MT ASE Definitions... 185

14.2.1 Starting Thread Execution... 186
14.2.2 Multithreading Software Design Considerations and the FORK Instruction...............186
14.2.3 Thread Overflow Exception... 187
14.2.4 Thread Suspension Using the YIELD Instruction.. 187
14.2.5 Additional MT ASE Instructions... 187

14.3 Multithreading CP0 Registers..188

 v

 Contents — Revision 01.20

14.3.1 Per-Core Multithreading Registers...188
14.3.2 Per-VPE Multithreading Registers... 188
14.3.3 Per-TC Multithreading Registers..188

14.4 Thread-Level Exception Processing..189
14.5 Fine-Grained Multithreading.. 189
14.6 Operating System Support.. 190

14.6.1 Thread Virtualization and Hybrid Scheduling.. 190
14.6.2 Software Security...191
14.6.3 Manipulating TC Dynamic Allocation Properties..191
14.6.4 Virtual Multiprocessor...191
14.6.5 Master and Slave VPEs.. 192

14.7 Programming Example: Starting a Thread..192
14.7.1 Turn on Virtual Processor Configuration and Disable Virtual Processing.................. 192
14.7.2 Set Target TC.. 193
14.7.3 Halt Target TC... 193
14.7.4 Bind TC to VPE... 194
14.7.5 Setting the Target TC's Stack and Global Pointers... 194
14.7.6 Setting Starting Function Address... 194
14.7.7 Activate the TC and Make It Dynamically Allocatable... 195
14.7.8 Unhalt the TC.. 195
14.7.9 Enable Threading...195
14.7.10 Turn Off Configuration Mode and Enable Virtual Processing.................................. 195

15 Instruction Delay Cycles..197
15.1 Instruction Types..197

15.1.1 Producers... 197
15.1.2 Consumers... 197
15.1.3 Transaction Delay Cycles.. 198

15.2 MTC0 Instruction Considerations.. 198

16 MIPS On-Chip Instrumentation..199
16.1 I7200 OCI Debug System Overview... 199
16.2 APB Map and Address Regions... 200
16.3 Power Management...201
16.4 CM2.6 Address Regions..201
16.5 CM2.6 Debug Registers.. 202
16.6 I7200 Core MPS Implementation.. 203
16.7 More Information on Debug Systems..204

Appendix A Revision History..205

vi

 List of Figures — Revision 01.20

List of Figures
Figure 1: I7200 Core-Level Block Diagram... 16

Figure 2: I7200 Core Address Translation...18

Figure 3: Relationship Between CP0 Registers and TLB Entries....................................20

Figure 4: Selecting Between PFN0 and PFN1 — 4 KByte Page Size.............................23

Figure 5: Selecting Between PFN0 and PFN1 — 16 KByte Page Size...........................24

Figure 6: Hardwiring Entries in the TLB.. 25

Figure 7: Random Replacement of a JTLB Entry..26

Figure 8: Traditional Virtual Address Mapping in Previous Generation MIPS32
Processors..30

Figure 9: Example of Remapping Kernel and User Virtual Address Space Using
EVA...31

Figure 10: Relationship Between EVAReset and CONFIG5.K at Reset.......................... 34

Figure 11: Mapping of SegCtl 0 - 2 Registers to Physical Address Space...................... 36

Figure 12: Registered Boot Exception Vector Relocation Pins — One Core...................39

Figure 13: Example of Mapping the Boot Exception Vector in the EVA Configuration..... 41

Figure 14: Size and Location of Overlay Region in Virtual Address Space — 1 MB
Example..43

Figure 15: Size and Location of Overlay Region in Virtual Address Space — 16 MB
Example..44

Figure 16: Physical Address Space Segmentation Using BEVExceptionBasePA
[31:29]...45

Figure 17: Example of Relocating the Boot Exception Vector... 46

Figure 18: Regions...49

Figure 19: MPU and FDC..50

Figure 20: Region within the Address Space.. 53

Figure 21: 512 byte Region... 54

Figure 22: Enable Only One Region... 55

Figure 23: Region Base Address...56

 vii

 List of Figures — Revision 01.20

Figure 24: Region Control Register... 57

Figure 25: I7200 Multiprocessing System Caches.. 64

Figure 26: L1 Instruction Cache Organization... 65

Figure 27: CM Interface Ports... 96

Figure 28: I7200 Power Domains.. 126

Figure 29: CPC Register Addressing Scheme Using an Example Base Address of
0x1BDE_0...130

Figure 30: GIC Register Addressing Scheme Using an Example Base Address of
0x1BDC_0.. 136

Figure 31: Local Watchdog Timer Interrupt Count Configuration...................................147

Figure 32: Watchdog Timer Interrupt Masking and Mapping in the GIC........................148

Figure 33: Local Interrupt Masking and Mapping in the GIC...152

Figure 34: Global Debug Interrupt Generation in the GIC...157

Figure 35: TSU Block Diagram..163

Figure 36: I7200 Resource Allocation..185

Figure 37: Maximum Number of VPEs and TCs in the I7200....................................... 186

Figure 38: OCI 32-Bit System Block Diagram... 199

Figure 39: I7200 Multi-Core Configuration with MDH..200

viii

 List of Tables — Revision 01.20

List of Tables
Table 1: TLB Instructions... 19

Table 2: PageMask Value and Corresponding Page Size... 21

Table 3: Index Register Format Depending on TLB Size.. 25

Table 4: Selecting the Addresing Mode...28

Table 5: Programmable Segmentation Register Interface... 31

Table 6: CFG (Segment Configuration) Field Descriptions..32

Table 7: CFG (Segment Configuration) Field Descriptions..35

Table 8: Setting the Access Control Mode for the EVA Configuration............................. 35

Table 9: Programmable Segmentation Register Interface... 37

Table 10: Load/Store Instructions in Programmable Memory Segmentation Mode......... 37

Table 11: I7200 Core-Local Reset Exception Extended Base Register bits.....................39

Table 12: LegacyUseExceptionBase bits in the Core-Local Reset Exception
Extended Base Register and CONFIG5.K Encoding...42

Table 13: Encoding of BEVExceptionBaseMask [27:20]..43

Table 14: Default Memory Segments...48

Table 15: CP0 CDMMBase Register... 50

Table 16: MPU Access Control and Status Register... 51

Table 17: MPU Configuration Register.. 51

Table 18: MPU_Segment Control Register (CDMM address + MPU Offset + 0x0010
+ (SegmentCTL Register Number * 0x4).. 52

Table 19: Attributes Configured by Segment Control Register.. 52

Table 20: Region Address and Control Registers..55

Table 21: Base Address Register Layout.. 56

Table 22: MPU Region Control Register..56

Table 23: Finding the Number of MPU Regions..61

Table 24: TLB, FMT, and MPU Capabilities...61

 ix

 List of Tables — Revision 01.20

Table 25: I7200 Cache Configurations...63

Table 26: L1 Instruction Cache Attributes..64

Table 27: Fields in the Encoding of a CACHE Instruction... 67

Table 28: L1 Data Cache Organization... 68

Table 29: L1 Data Cache Virtual Aliasing Conditions.. 68

Table 30: Valid and Invalid L2 Cache Configurations.. 72

Table 31: Instruction Cache CP0 Register Interface..75

Table 32: Data Cache CP0 Register Interface.. 76

Table 33: Exception Vectors...80

Table 34: LegacyUseExceptionBase bit and CONFIG5.K Encoding............................... 82

Table 35: Exception Vector Base Addresses: Legacy Mode,
LegacyUseExceptionBase bit Is Not Set... 83

Table 36: Exception Vector Base Addresses: Legacy Mode,
LegacyUseExceptionBase Is Set...83

Table 37: Exception Vector Offsets..84

Table 38: Exception Vector Base Addresses — EVA Mode.. 84

Table 39: Exception Vectors...84

Table 40: Priority of Exceptions... 86

Table 41: Debug Exception Vector Address.. 90

Table 42: DebugVectorAddr Register Format.. 90

Table 43: DebugVectorAddr Register Field Descriptions...90

Table 44: Exception Vector Offsets for Vectored Interrupts... 95

Table 45: CMGRBase Register..97

Table 46: GCR Sub-Blocks.. 98

Table 47: Global Configuration Register.. 98

Table 48: Global GCR Access Privilege Register..99

Table 49: GIC Status Register... 100

Table 50: GIC Base Address Register...100

Table 51: Cluster Power Controller Address Register... 100

x

 List of Tables — Revision 01.20

Table 52: GCR Custom Base Register..101

Table 53: GCR Base Register... 102

Table 54: Address Region Register Offsets...103

Table 55: Region Base Address Register..103

Table 56: Region Address Mask Register... 103

Table 57: Attribute-Only Region Register Offsets.. 104

Table 58: Attribute-Only Region Address Register.. 105

Table 59: Attribute-Only Region Address Mask Register...105

Table 60: CM Error Types..105

Table 61: CM Error Mask Register.. 107

Table 62: Error Cause Register... 107

Table 63: ERROR_INFO Field State for Error Types 1 - 7..107

Table 64: MCmd (Bits 11:7) Encoding for CM_ERROR_INFO...................................... 108

Table 65: ERROR_INFO Field State for Error Types 8 - 15..108

Table 66: ERROR_INFO Field State for Error Types 16 - 23.. 108

Table 67: Coherent State Values for Error Types 16 - 23..109

Table 68: Intervention SResp Values for Error Types 16 - 23....................................... 109

Table 69: ERROR_INFO Field State for Error Types 24 - 26.. 109

Table 70: Instructions for Error Types 24 - 26... 110

Table 71: Core-Local And Core-Other Offset from GCR Base...................................... 111

Table 72: Core-Local and Core-Other Register Offsets...111

Table 73: Core-Other Addressing Register..111

Table 74: Core-Local Coherence Control Register.. 112

Table 75: Core Local Config Register..112

Table 76: Core Local Identification Register.. 113

Table 77: CM Performance Counter Event Types... 116

Table 78: CM Performance Counter Request Count Qualifier.......................................117

Table 79: CM Performance Counter Coherent Request/Response Qualifier................. 118

 xi

 List of Tables — Revision 01.20

Table 80: CM Performance Counter Accept State Qualifier.. 120

Table 81: CM Performance Counter CM Data Source Qualifier.................................... 120

Table 82: CM Performance Counter CM Port Response Qualifier................................ 121

Table 83: L2 Utilization Qualifier.. 121

Table 84: L2 Hit Qualifier... 121

Table 85: IOCU Performance Counter Request Count..122

Table 86: CM Performance Counter Read Request and Latency Qualifier....................123

Table 87: CPC Address Map (Relative to GCR_CPC_BASE[31:15])............................ 128

Table 88: Example Physical Address Calculation of the CPC Register Blocks..............129

Table 89: Absolute Address of Individual CPC Global Control Block Registers.............129

Table 90: Absolute Address of Individual CPC Core-Local Block Registers.................. 129

Table 91: Absolute Address of Individual CPC Core-Other Block Registers..................130

Table 92: Global Control Block Register Map (Relative to Global Control Block
Offset)... 130

Table 93: Core-Local Block Register Map... 131

Table 94: Core-Other Block Register Map...132

Table 95: Processor Numbering...133

Table 96: GIC Address Space... 134

Table 97: Example Physical Address Calculation of the GIC Register Blocks...............135

Table 98: Absolute Address of Individual GIC Shared Block Registers......................... 136

Table 99: Selecting Interrupt Polarity, Edge Sensitivity, and Triggering......................... 139

Table 100: External Interrupt Mapping...139

Table 101: Local Interrupt Masking and Mapping Register Usage Per Interrupt Type... 149

Table 102: Polling for an Active Interrupt...156

Table 103: ITC AddressMap0 Register Format... 167

Table 104: ITC AddressMap1 Register Format... 167

Table 105: ITU AddressMap0 Field Descriptions...168

Table 106: ITU AddressMap1 Field Descriptions...168

xii

 List of Tables — Revision 01.20

Table 107: Cell Views.. 169

Table 108: Control View Format.. 171

Table 109: Config Register (CP0 #16 - Select 0).. 176

Table 110: Error Control Register (CP0 #26 - Select 0).. 176

Table 111: DTagLo (CP0 #28 - Select 2 D Tags), ITagLo (CP0 #28 - Select 0 I Tags)... 176

Table 112: Execution Hazards... 182

Table 113: Execution Hazards... 183

Table 114: MVPControl Register..193

Table 115: VPEControl Register.. 193

Table 116: TCHalt Register.. 193

Table 117: TCBind Register... 194

Table 118: TCRestart Register...194

Table 119: TCStatus Register.. 195

Table 120: VPEControl Register.. 195

Table 121: Transaction Delay Cycles.. 198

Table 122: APB Map.. 200

Table 123: APB Address Regions... 201

Table 124: APB Behavior for Core States... 201

Table 125: CM2.6 APB Address Regions..201

Table 126: CM2.6 APB Debug Registers.. 202

Table 127: CM2.6 APB Read-Only ID Registers... 203

 xiii

1 MIPS32 I7200 Multiprocessing System Programmer's Guide — Revision 01.20

1 MIPS32 I7200 Multiprocessing System Programmer's
Guide
This document describes the software-programmable aspects of the 32-bit MIPS I7200 Multiprocessing
System (MPS). The I7200 architecture combines a multi-threading pipeline with a highly intelligent coherence
manager to deliver best-in-class computational throughput and power efficiency. This document describes
how to control the hardware using registers and assembly code. The register-programming examples describe
a programming sequence to set or change a programmable parameter using registers. The assembly code
examples show how you use the MIPS instruction set to perform the same function.

Each chapter provides the relevant background information programmers require to understand the examples.
Each block has common examples such as enabling and initialization, as well as in depth examples specific for
that block.

This document describes the following blocks:

• Memory Management (MMU): This chapter describes the programmable elements of the Translation
Lookaside Buffer or TLB of the I7200 MPS. The first section gives an overview of the TLB architecture,
a description of its functionality and a description of the elements that go into programming the TLB. The
sections that follow cover specific information on programming for the Translation Lookaside Buffer (TLB).

• Enhanced Virtual Address (EVA): This chapter describes how to implement Enhanced Virtual Address or
EVA, which allows for more efficient use of the 32b address space.

• Memory Protection Unit (MPU): This chapter describes an alternate to the TLB-based MMU. It provides
an overview of the MPU architecture and describes how to program the MPU.

• Caches: This chapter provides an overview of the cache architecture, a description of its functionality, and
a description of the elements that go into programing the caches. A description of the register interface is
provided, as well as initialization code for all three caches, setting up cache coherency, handling cache
exceptions, and testing the cache RAM.

• Exceptions: This chapter describes an overview of exception processing and a definition of the interrupt
modes. Information on how to program the reset, boot, and general exception vectors in memory is also
covered. A list of exception priorities is provided, along with an assembly language example of an exception
handler.

• Coherence Manager (CM): The Coherence Manager with integrated L2 cache (CM) is responsible for
establishing the global ordering of requests and for collecting the intervention responses and sending the
correct data back to the requester. This chapter describes the CM and provides programming examples.

• Cluster Power Controller (CPC): This chapter provides an overview of how power is managed in the
I7200 Multiprocessing System and identifies the various power and clock domains the programmer can
use to manage power consumption in the device. In addition, a procedure on how to set the CPC base
address in memory is provided. Other programming principles include setting the device to coherent or non-
coherent mode, requestor (core or IOCU) access of CPC registers, system power-up policy, programming
examples of a clock domain change and clock delay change, powering up the CPC in standalone mode (no
cores enabled), reset detection, VP run/suspend mechanism, local RAM shutdown and wake-up procedure,
accessing registers in another power domain, and fine tuning internal and external signal delays to help the
programmer easily integrate the device into a system environment.

• Global Interrupt Controller (GIC): This chapter describes how to program the various elements of the GIC
using both register examples and code examples. Some of these elements include setting the operating
mode, setting up the address map, GIC register layout and distribution, setting the GIC base address,
determining the number of external interrupts, and configuring individual interrupt sources.

• Policy Manager: The Policy Manager provides longer-term hints to the Dispatch Scheduler to achieve
the desired system performance allocation. This chapter describes the Thread Scheduling Unit and Policy
Manager modes.

14

1 MIPS32 I7200 Multiprocessing System Programmer's Guide — Revision 01.20

• Inter-Thread Communication Unit (ITU): The ITU provides an alternative to Load-Linked/Store-
Conditional synchronization for fine grained multithreading by utilizing gating storage. The chapter
describes the purpose for the ITU and the configuration and programming aspects.

• SPRAM: The optional Scratch Pad RAM (SPRAM) blocks provide a general scratch pad RAM used for
temporary storage of data. The SPRAM provides a connection to on-chip memory or memory-mapped
registers, which are accessed in parallel with the L1 data cache to minimize access latency.

• Multithreading: This chapter provides an overview of the hardware multi-threading mechanism in the I7200
MPS.

• On-Chip Instrumentation (OCI): This chapter provides a brief overview of the interface and external
debugging environment required to debug MIPS processors that incorporate the MIPS On-Chip
Instrumentation (OCI) debug system for multi-core designs.

Note: Refer to the I7200 Datasheet for a complete feature list.

These chapters include assembly language examples that describe how various programming elements
are handled in software. These examples can be used by programmers writing their own code to program
a particular block, or for writing a low-level support library, RTOS, or their own tool chain. However, most of
the code examples described are part of the MIPS Codescape toolchain. As such, it is not necessary for the
programmer to execute these code examples manually when using Codescape because this functionality is
already built into the software.

This document is meant to be used with the following documents:

• MIPS32 I7200 Multiprocessor Core Family Datasheet

• 32-bit MIPS I7200 Multiprocessing System Integrator's Guide. This companion document provides
hardware details about the device, including functional verification, system integration, and system
implementation.

1.1 Overview
The MIPS32

®
 I7200 multiprocessing system (MPS) is a high performance multi-core cluster licensable IP

solution. It is designed to deliver both high performance and low-latency responsiveness for system-on-
chip (SoC) applications requiring rapid processing of real-time events.

Each core within the multi-core cluster is based on a 9-stage, dual-issue in-order pipeline with support
for hardware multi-threading, designed to deliver high throughput and performance, and best-in-class
efficiency per unit power and area. To complement the efficient pipeline design, the I7200 MPS utilizes the
nanoMIPS instruction set architecture (ISA) to deliver this performance in smallest code size, providing for
optimal use of the local memory resources to the CPU.

The cores of the I7200 MPS are coherently connected together via a Coherence Manager (CM, version
2.6) functional block, which includes a number of system level features and functional elements, including:
• Shared L2 cache

• Optional Global interrupt controller (GIC)

• Optional Cluster power controller (CPC)

• Accelerator/ IO coherency ports

• Global configuration registers (GCR)

The entire system offers many configurable options at the core and cluster level, and is available as fully
synthesizable RTL for implementation in any semiconductor process technology.

1.2 I7200 Core Block Diagram

 15

2 Memory Management Unit — Revision 01.20

2 Memory Management Unit
The MMU translates virtual addresses generated by the core, to physical addresses used to access caches,
memory and other devices. Virtual-to-physical address translation is especially useful for operating systems
that must manage physical memory to accommodate multiple tasks active in the same virtual address space.
The MMU also enforces the protection of memory areas and defines the cache attributes. The I7200 MMU
implements a Translation Lookaside Buffer (TLB). An alternative to the TLB is the Memory Protection Unit. See
Memory Protection Unit on page 47 for details.

This chapter covers the programmable elements of the TLB in the I7200 Multiprocessing System. The
first section gives an overview of the TLB architecture, a description of its functionality and a description
of the elements that go into programming the TLB. The sections that follow cover specific information on
programming for the TLB.

The I7200 TLB provides access control for different page segments of memory. The core writes to internal
coprocessor 0 (CP0) registers with the information used to initialize and modify entries in the TLB, then
executes a TLB write instruction (TLBWI or TLBWR) to move the data from the registers to the TLB.

2.1 Memory Management Unit Architecture
The Memory Management Unit (MMU) in the I7200 core consists of three address-translation lookaside
buffers (TLB).
• 4 - 12 entry Instruction TLB (ITLB)

• 8-entry Data TLB (DTLB)

• 16, 32, or 64 dual-entry Joint Translation Lookaside Buffer (JTLB) per VPE

When an instruction address is to be translated, the ITLB is accessed first. If the translation is not found,
the JTLB is accessed. If there is a miss in the JTLB, an exception is taken. Similarly, when a data reference
is to be translated, the DTLB is accessed directly. If the address is not present in the DTLB, the JTLB is
accessed. If there is a miss in the JTLB, an exception is taken.

2.1.1 Translation Lookaside Buffer (TLB)
The basic TLB functionality is specified by the MIPS32 Privileged Resource Architecture. A TLB provides
mapping and protection capability with per-page granularity. The I7200 implementation allows a wide range
of page sizes to be simultaneously present.

The TLB contains a fully associative Joint TLB (JTLB). To enable higher clock speeds, two smaller micro-
TLBs are also implemented: the Instruction Micro TLB (ITLB) and the Data Micro TLB (DTLB). When an
instruction or data address is calculated, the virtual address is compared to the contents of the appropriate
micro TLB (uTLB). If the address is not found in the uTLB, the JTLB is accessed. If the entry is found in the
JTLB, that entry is then written into the uTLB. If the address is not found in the JTLB, a TLB exception is
taken.

 17

2 Memory Management Unit — Revision 01.20

entries dedicated to one TC. Conversely, a core with 1 VPE and 9 TC’s would have a three shared entries,
plus one entry per TC, for a total of 12 entries.

The ITLB maps 4 KB or 1 MB pages/subpages. For 4 KB or 1 MB pages, the entire page is mapped in the
ITLB. If the main TLB page size is between 4 KB and 1 MB, only the current 4 KB subpage is mapped.
Similarly, for page sizes larger than 1 MB, the current 1 MB subpage is mapped.

2.1.4 Data TLB (DTLB)
The DTLB is managed by hardware and is transparent to software. The larger JTLB is used as a backing
structure for the DTLB. If a load/store address cannot be translated by the DTLB, a lookup is done in the
JTLB. The JTLB translation information is copied into the DTLB for future use.

The DTLB is an 8-entry, fully associative TLB dedicated to performing translations for loads and stores. All
entries are shared by all TCs. Similar to the ITLB, the DTLB maps either 4 KB or 1 MB pages/subpages.

2.2 TLB Instructions
The following table describes the TLB-related instructions in the I7200 core.

Table 1: TLB Instructions

Mnemonic Instruction Description
TLBP Translation Lookaside Buffer

Probe
Used to determine whether a particular address was
successfully translated. When a TLBP instruction is executed
and fails to find a match for the specified virtual address,
hardware sets bit 31 of the Index register.

TLBR Translation Lookaside Buffer
Read

TLBWI Translation Lookaside Buffer
Write Index

TLB write extended to support invalidation of individual TLB
entries.

TLBWR Translation Lookaside Buffer
Write Random

TLBINV Translation Lookaside Buffer
Invalidate

Added to support set level invalidation of TLB entries.

TLBINVF Translation Lookaside Buffer
Invalidate Flush

Added to support TLB flush based invalidation of TLB entries.

2.3 Relationship of TLB Entries and CP0 Registers
Each TLB entry in the JTLB consists of a tag portion and dual-data portion as shown in Figure 3:
Relationship Between CP0 Registers and TLB Entries on page 20. In this figure, the following registers
are used to manage the TLB entries.
• EntryLo0 (CP0 Register 2, Select 0)

• EntryLo1 (CP0 Register 3, Select 0)

• EntryHi (CP0 Register 10, Select 0)

• PageMask (CP0 Register 5, Select 0)

To fill an entry in the JTLB, software executes a TLBWI or TLBWR instruction. Prior to invoking one of
these instructions, the CP0 registers listed above must be updated with the information to be written to the
TLB entry:

• PageMask is set in the CP0 PageMask register.

• VPN2, and ASID are set in the CP0 EntryHi register.

 19

2 Memory Management Unit — Revision 01.20

ASID Field
The address space identifier (ASID) helps to reduce the frequency of TLB flushing on a context switch.
The ASID field extends the virtual address with an 8-bit memory space identifier assigned by the operating
system. The ASID allows translations for multiple different applications to co-exist in the TLB (in Linux, for
example, each application has different code and data lying in the same virtual address region). The ASID
field is generated using the EntryHi register.

PageMask Field
The size of the tag can be configured using the ‘PageMask’ field. This field determines how many incoming
address bits to match. For the TLB, the I7200 core allows page sizes of 4 Kbytes up to 256 Mbytes in
multiples of four. The PageMask field is generated using the PageMask register.

In the PageMask field, a ‘1’ on a given bit means "don’t compare this address bit when matching this
address". However, only a restricted range of PageMask values are legal. The values must start with "1"s
filling the PageMask field from the low-order bits upward, two at a time. A list of valid 32-bit PageMask
register values, the corresponding binary value of the PageMask[28:13] field, and the corresponding page
size is shown in Table 2: PageMask Value and Corresponding Page Size on page 21. For the Page-
Mask[28:13] field, note that the bits are set two at a time from the least significant bit (LSB) to the most
significant bit (MSB).

Table 2: PageMask Value and Corresponding Page Size

32-bit PageMask Register
Value

PageMask[28:13] Page Size Even/Odd Bank Select Bit

0x0000_0000 0x00_0000_0000_0000_00 4 KBytes VAddr[12]

0x0000_6000 0x00_0000_0000_0000_11 16 KBytes VAddr[14]

0x0001_E000 0x00_0000_0000_0011_11 64 KBytes VAddr[16]

0x0007_E000 0x00_0000_0000_1111_11 256 KBytes VAddr[18]

0x001F_E000 0x00_0000_1111_1111_11 1 MByte VAddr[20]

0x007F_E000 0x00_0011_1111_1111_11 4 MBytes VAddr[22]

0x01FF_E000 0x00_0011_1111_1111_11 16 MBytes VAddr[24]

0x07FF_E000 0x00_1111_1111_1111_11 64 MBytes VAddr[26]

0x1FFF_E000 0x11_1111_1111_1111_11 256 MBytes VAddr[28]

Global (G) Bit
The ‘G’ (global) bit in the tag entry is a logical AND between the G bits of the EntryLo0and
EntryLo1registers. When set, it causes addresses to match regardless of their ASID value, thus defining a
part of the address space which will be shared by all applications. For example, Linux applications share
some ‘kseg2’ space used for kernel extensions.

Note: Because the G bit in the TLB tag entry is a logical AND between two G bits, software must be sure
to set EntryLo0G and EntryLo1G to the same value.

2.3.2 TLB Data Entry
The data portion describes each field of the TLB data entry shown in Figure 3: Relationship Between CP0
Registers and TLB Entries on page 20.

Read Inhibit (RI)
If this bit is set in a TLB entry, an attempt to read data on the virtual page causes a TLBRI exception, even
if the V (Valid) bit is set.

 21

2 Memory Management Unit — Revision 01.20

Execute Inhibit (XI)
If this bit is set in a TLB entry, an attempt to fetch an instruction from the virtual page causes a TLBXI
exception, even if the V (Valid) bit is set.

Page Frame Number (PFN)
The Page Frame Number (PFN) contains the high-order bits of the physical address. For a 4 KByte page
size, the 20- bit PFN, together with the lower 12 bits of address that are not translated, make up the 32-bit
physical address.

Flag Fields (C, D, V,)
These flag bits contain information about the translated address. All of these bits are generated by the
EntryLo0 and EntryLo1 registers.

• C Field: This field contains the cacheability attributes for the corresponding TLB entry. It indicates how
to cache data for this page. Pages can be marked cacheable, uncacheable, coherent, non-coherent,
uncached accelerated, write- back, write-allocate, etc

• D bit: The "dirty" flag. Setting this bit indicates that the page has been written, and/or is writable. If this
bit is a one, stores to the page are permitted. If this bit is a cleared, stores to the page cause a TLB
Modified exception. Software can use this bit to track pages that have been written to. When a page is
first mapped, this bit should be cleared. It is set on the first write that causes an exception.

• V bit: The "valid" flag. Indicates that the TLB entry, and thus the virtual page mapping, are valid. If this
bit is set, accesses to the page are permitted. If this bit is a zero, accesses to the page cause a TLB
Invalid exception.

• G bit: Global bit. On a TLB write, the logical AND of the G bits from both EntryLo0 and EntryLo1
becomes the G bit in the TLB entry. If the TLB entry G bit is a one, ASID comparisons are ignored
during TLB matches. On a read from a TLB entry, the G bits of both EntryLo0 and EntryLo1 reflect the
state of the TLB G bit.

2.3.3 Address Translation Examples
As shown in Figure 3: Relationship Between CP0 Registers and TLB Entries on page 20, there are two
PFN values for each tag match. Which of them is used is determined by the lowest-order bit of the VPN
field of the address. So in standard form (using 4 KByte pages) each entry translates an 8 KByte region of
virtual address, but each 4 Kbyte page can be mapped onto any physical address (with any permission flag
bits). This concept is described in the following subsections.

4 KByte Page Size Example
In a 4 KByte page size, 12 address bits are required to select an entry within the page. Therefore, 12 bits
of the virtual address are used for the offset into the page. The upper 20 bits of the virtual address are
used as a pointer to the page table. With a 4 KByte page size, this allows support for up to 1M page table
entries.

The upper 20 bits of virtual address pass through the TLB to generate the corresponding physical address.
The I7200 core implements a dual-entry JTLB scheme, where each TLB tag corresponds to two data

22

2 Memory Management Unit — Revision 01.20

Table 3: Index Register Format Depending on TLB Size

31 30 6 5 0
P 0 Index

The Index register determines which TLB entry is accessed by a TLBWI instruction. This register is also
used for the result of a TLBP instruction (used to determine whether a particular address was successfully
translated by the CPU). Note that a TLBP instruction that fails to find a match for the specified virtual
address sets bit 31 of the Index register.

2.4.2 Hardwiring JTLB Entries
The I7200 core allows up to 63 entries of the JTLB to be hardwired such that they cannot be replaced.
This is accomplished using the Wired register (CP0 register 6, Select 0). The Wired register specifies the
boundary between the wired and random entries in the JTLB. Wired entries are fixed, non-replaceable
entries that cannot be overwritten by a TLBWR instruction. However, wired entries can be overwritten by a
TLBWI instruction.

Wired entries in the JTLB must be contiguous and start from 0. For example, if the Wired field of this
register contains a value of 5, this indicates that entries 4, 3, 2, 1, and 0 of the TLB are wired. The Wired
register is reset to zero by a Reset exception. Writing to the Wired register may cause the Random register
to change state. The following figure shows an example of hardwiring the lower 5 entries of the TLB. A
value of 0x0 in the Wired register indicates that no entries are hardwired and that all entries are available
for replacement.

Figure 6: Hardwiring Entries in the TLB

0
31 6 05

Wired

000101

63

5
4

0

Value in register
hardwires TLB entries
such that they cannot
be replaced.

TLB Array

TLB Entries
Can be
Replaced

TLB Entries
Cannot be
Replaced

2.4.3 JTLB Random Replacement
The I7200 core performs random replacement within the 64 dual-entry JTLB using the CP0 Random
register (CP0 register 1, Select 0). This read-only register is used to index the TLB during a TLBWR
instruction. It provides a quick way of replacing a JTLB entry at random.

The Random register employs a pseudo-random least-recently-used (LRU) algorithm, which ensures that
no wired entries are selected. Only those LRU entries that are not in the Wired register are targeted for

 25

2 Memory Management Unit — Revision 01.20

• On a load in supervisor mode, an AdEL exception is taken when supervisor mode does not have
permission for the address being accessed.

• On a store in supervisor mode, an AdES exception is taken when supervisor mode does not have
permission for the address being accessed.

The TLB Refill exception is taken on any TLB miss regardless of the operating mode.

The TLB Invalidate exceptions (TLBL and TLBS) are taken under the following conditions.

• TLBL exception: On a non-store, there is a TLB hit, but the valid bit for that TLB entry is not set.

• TLBS exception: On a store in any mode, there is a TLB hit, but the valid bit for that TLB entry is not set.

A TLB Modified exception is taken whenever there is a TLB hit and the Dirty bit associated with that entry is
not set.

Register Interface
The I7200 core uses the following CP0 registers to manage TLB exceptions.

• Context (CP0 register 4, Select 0): Contains the pointer to an entry in the page table entry (PTE) array.

• ContextConfig (CP0 register ??, Select 0): Defines the bits of the Context register into which the high
order bits of the virtual address causing a TLB exception will be written (BadVPN2), and how many bits
of that virtual address will be extracted. In the Context register, bits above the selected BadVPN2 field
are read/write to software and serve as the PTEBase field. Bits below the selected BadVPN2 field serve
as the PTEBaseLow field.

• BadVAddr (CP0 register 8, Select 0): 32-bit read-only register that captures the most recent virtual
address that caused the exception. The BadVAddr register does not capture address information for
cache or bus errors because they are not addressing errors.

For more information on these registers, refer to the CP0 Registers companion document provided in the
documentation package.

TLB Exception Handler Code Example
The exception handler can directly use the value in the CP0 Context register as the memory address to
read the EntryLo0/1 settings. The processor also writes the Virtual Page Number (VPN) that missed to the
EntryHi register so it is ready to write the TLB entry. The following example shows the assembly language
implementation of a TLB exception handler for 32-bit addressing mode.

 .set noreorder
 #define C0_ENTRYLO0 $2,0
 #define C0_ENTRYLO1 $3,0
 #define C0_CONTEXT $4,0
 #define C0_XCONTEXT $20,0

 TLBmiss32:

mfc0 k1, C0_CONTEXT // Get Context register (CP0 register 4)
lw k0, 0(k1) // Load EntryLo0 into k0
lw k1, 8(k1) // Load EntryLo1 into k1
mtc0 k0, C0_ENTRYLO0 // Move k0 to CP0 EntryLo0 (CP0 register 2)
mtc0 k0, C0_ENTRYLO1 // Move k0 to CP0 EntryLo1 (CP0 register 3)
ehb // Clear hazard barrier to insure CP0 write takes effect
tlbwr // Write to random TLB entry
eret // Return from TLB exception

Note: Some operating systems like Linux use a 3-level Page Table and do not use the Context registers
for page table lookup. Instead they use the CP0 BadVaddr register and their own scheme to access the
correct page table entry. Refer to the Linux OS documentation for details on the page table handling.

2.6 TLB Duplicate Entries
The JTLB entries come up in a random state on power-up and must be initialized by hardware before use.
Typically, bootstrap software initializes each entry in the TLB. Because the JTLB is a fully-associative array

 27

2 Memory Management Unit — Revision 01.20

and entries are written by index, it is possible to load duplicate entries, where two or more entries match
the same virtual address/ASID.

If duplicate entries are detected on a TLB write, no machine check is generated and the older entries
are simply invalidated. The new entry gets written. When writing to the TLB, all entries of the JTLB are
searched for duplicates.

2.7 Modes of Operation
The MMU’s virtual-to-physical address translation is determined by the mode in which the processor is
operating. The I7200 core operates in one of four modes:
• User mode

• Supervisor mode

• Kernel mode

• Debug mode

User mode is most often used for application programs. Supervisor mode is an intermediate privilege level
with access to an additional region of memory and is only supported with the TLB-based MMU. Kernel
mode is typically used for handling exceptions and privileged operating system functions, including CP0
management and I/O device accesses. Debug mode is used for software debugging and usually occurs
within a software development tool.

Table 4: Selecting the Addresing Mode

Status DebugMode
EXL ERL KSU DM

Description

User 0 0 2'b2 0 User addressing mode. In this mode, a TLB miss goes to
the TLB Refill Handler.

Supervisor 0 0 2'b1 0 Supervisor addressing mode. In this mode, a TLB miss
goes to the TLB Refill Handler.

x x 2'b0 0 Kernel addressing mode. In this mode, a TLB miss goes
to the TLB Refill Handler.

x 1 x 0 Kernel addressing mode. In this mode, a TLB miss goes
to the TLB Refill Handler.

Kernel

1 x x 0 Kernel addressing mode. In this mode, a TLB miss goes
to the general exception handler as opposed to the TLB
Refill handler.

Debug x x x 1 Debug mode.

 28

3 Enhanced Virtual Address — Revision 01.20

3 Enhanced Virtual Address
Traditional MIPS virtual memory support divides up the virtual address space into fixed size segments, each
with fixed attributes and access privileges. Such a scheme limits unmapped kernel access to 512 MBytes, the
size of kseg0/kseg1. Furthermore, application sizes are growing beyond the 2 GB limit imposed by the useg
user segment.

Programmable Memory Segmentation relaxes these limitations. The size of virtual address space segments
can be programmed, as can their attributes and privilege access. With this ability to overlap access modes,
kseg0 can now be extended up to 3.0 GB1, leaving at least one 1.0 GB segment for mapped kernel accesses.
This extended kseg0 (xkseg0) overlaps with useg, because segments in xkseg0 are programmed to support
mapped user accesses and unmapped kernel accesses. Consequently, user space is equal to the size of
xkseg0, which can be up to 3.0 GB.

To allow for efficient kernel access to user space, load and store instructions allow kernel-mapped access
to useg. These instructions, along with Programmable Memory Segmentation, permit implementation of
Enhanced Virtual Address or EVA, which allows for more efficient use of 32b address space.

Note: EVA is only supported when TLB is configured. When the core is configured with an MPU, EVA,
segment-control registers, and physical-address relocation overlays are not supported. Refer to MPU and
Segment Control on page 61 for the behaviors of these bits and registers when MPU is configured.

3.1 Virtual and Physical Address Maps
In previous generation MIPS32 processors, the address map was fixed. In this architecture, physical
memory is limited by kseg0 to 0.5GB, the amount of kernel unmapped cached address space. This

1 If necessary, xkseg0 can be extended to 3.5 GB, allowing 0.5 GB for Kernel mapped virtual address space (now kseg2).

 29

3 Enhanced Virtual Address — Revision 01.20

memory must also be shared by the I/O and kernel, thus in reality less than 0.5GB is available to any user
process.

Figure 8: Traditional Virtual Address Mapping in Previous Generation MIPS32 Processors

Kernel Mapped
(kseg3)

Supervisor Mapped

User Mapped
(useg)

0.0 GB

2.0 GB

3.0 GB

3.5 GB

4.0 GB
Virtual Address Space

(ksseg)

Kernel Unmapped
Uncached (kseg1)

Kernel Unmapped
Cacheable (kseg0)

2.5 GB

Traditional MIPS

Main Memory
0.0 GB

4.0 GB
Physical Memory

0.5 GB

The following figure shows an example of how the traditional MIPS kernel virtual address space can be
remapped using programmable memory segmentation to facilitate the EVA scheme. As a result of defining
the larger kernel segment as xkseg0, the kernel has unmapped access to the lower 3GB of the virtual
address space. The larger user segment could be defined because the address space is not statically
partitioned. This allows for a total of 3.5GB of DRAM to be supported in the system.

30

3 Enhanced Virtual Address — Revision 01.20

Note: xkseg0 is equivalent to the previous kseg0 space in that it is a kernel unmapped, cacheable region.

Figure 9: Example of Remapping Kernel and User Virtual Address Space Using EVA

Kernel Mapped
(kseg3)

Kernel Unmapped
(xkseg0)

0.0 GB

3.0 GB

3.5 GB

4.0 GB

0.0 GB

3.0 GB

4.0 GB

Main Memory
User Mapped

(useg)

0.0 GB

3.0 GB

4.0 GB
Kernel Virtual Address User Virtual AddressPhysical Memory

Kernel Mapped
(ksseg)

3.2 Initial EVA Configuration Parameters
During build time, you select the EVA parameters through the GUI. These selections are registered into the
CM, which drives the core EVA pins with the appropriate value. For a listing of EVA related pins and their
function, refer to Boot Exception Vector Relocation in Kernel Mode on page 38.

3.3 Programmable Segmentation Control
Programmable segmentation allows for the virtual address space segments to be programmed with
different access modes and attributes. Control of the 4GB of virtual address space is divided into six
segments that are controlled using three CP0 registers; SegCtl0 through SegCtl2. Each register has two
16-bit fields. Each field controls one of the six address segments as shown in in the following table.

Table 5: Programmable Segmentation Register Interface

Register CP0 Location Memory
Segment

Register Bits Virtual
Address Space
Controlled

Virtual Address
Range

CFG5 31:16 0.0 - 1.0 GB 0x0000_0000 -
0x3FFF_FFFF

SegCtl2 Register 5 Select
4

CFG4 15:0 1.0 - 2.0 GB 0x4000_0000 -
0x7FFF_FFFF

CFG3 31:16 2.0 - 2.5 GB 0x8000_0000 -
0x9FFF_FFFF

SegCtl1 Register 5 Select
3

CFG2 15:0 2.5 - 3.0 GB 0xA000_0000 -
0xBFFF_FFFF

 31

3 Enhanced Virtual Address — Revision 01.20

Register CP0 Location Memory
Segment

Register Bits Virtual
Address Space
Controlled

Virtual Address
Range

CFG1 31:16 3.0 - 3.5 GB 0xC000_0000 -
0xDFFF_FFFF

SegCtl0 Register 5 Select
2

CFG0 15:0 3.5 - 4.0 GB 0xE000_0000 -
0xFFFF_FFFF

Each 16-bit field listed in the above table contains information on the corresponding memory segment such
as address range (for kernel unmapped segments), access mode, and cache coherency attributes. The
following table describes the 16-bit configuration fields (CFG0 - CFG5) defined in the SegCtl0 - SegCtl2
registers.

Table 6: CFG (Segment Configuration) Field Descriptions

CFGn Fields
Name Bits

Description

PA 15:9, 31:25 Physical address bits 31:29 for segment, for use when unmapped. These bits
are used when the virtual address space is configured as kernel unmapped
to select the segment in memory to be accessed.

For segments 0, 2, and 4, CFG[11:9] correspond to physical address bits
31:29. CFG[15:12] correspond to physical address bits 35:32 in a 36-bit
addressing scheme and are reserved for future use. The state of CFG[15:12]
are read/write and can be programmed, but these bits are not driven onto the
address bus.

For segments 1, 3, and 5, CFG[27:25] correspond to physical address bits
31:29. CFG[31:28] correspond to physical address bits 35:32 in a 36-bit
addressing scheme and are reserved for future use.

These bits are not used by the CFG4 and CFG5 spaces when these
segments are programmed to be kernel mapped and the physical address is
determined by the TLB. They are also not used for any of the user mapped
(useg) region for the same reason.

Reserved 8:7, 24:23 Reserved.

AM 6:4, 22:20 Access control mode.

For programmable segmentation, these bits are set as shown in Table 3.5.

Bits 6:4 correspond to segments 0, 2, and 4. Bits 22:20 correspond to
segments 1, 3, and 5.

EU 3, 19 Error condition behavior. Segment becomes unmapped and uncached when
StatusERL = 1.

Bit 3 corresponds to segments 0, 2, and 4. Bit 19 corresponds to segments 1,
3, and 5.

C 2:0, 18:16 Cache coherency attribute, for use when unmapped.

For programmable segmentation, these bits are set as shown in Table 3.5.

Bits 2:0 correspond to segments 0, 2, and 4. Bits 18:16 correspond to
segments 1, 3, and 5.

Cache Coherency Attribute Control and the Segmentation Control Registers
The CP0 memory segmentation control registers (SegCtl0 - SegCtl2) are used to control the size and
function of the various memory map segments in the I7200 core. Each segmentation control register
contains its own cache coherency attribute field to allow for maximum flexibility when assigning cacheability

32

3 Enhanced Virtual Address — Revision 01.20

attributes to the memory. However, because existing code may not be aware of the existence of the
SegCtl0 - SegCtl2 registers, the I7200 core allows a mechanism for the cache coherency attributes (CCA)
of kseg0 to be set either by the Config.K0 field or by the CFG3_C field (bits 18:16) of the SegCtl1 register.
This allows existing code to configure virtual memory for a legacy setting.

To control where the cache coherency attributes for the memory are taken from, the CP0 Config5 register
uses the Config5.K bit. If the Config5.K bit is cleared, the cache coherency attributes for kseg0 are derived
from the 3-bit Config.K0 field of the CP0 Config register. This can be done when booting the I7200 core
using existing code. If the Config5.K bit is set, the cache coherency attributes are derived from the 3-bit
SegCtlx.CFGy_C field of the segmentation control registers (where x indicates the segmentation control
register number 0 - 2, and y indicates memory segments 0 - 5). When configured for EVA, each of the six
memory segments can be indivudually defined with its own cache coherency attributes.

The initial programming of Config5.K bit is determined by the state of EVAReset bit [31] in the Core-Local
Reset Exception Extended Base Register at reset.

Functions of the Config5.K Bit
The Config5.K bit effects the cache coherency attributes, the boot exception vector overlay mechanism,
and the location of the exception vector. When the Config5.K bit is cleared, the following events occur:

1. The 3-bit Config.K0 field is used to set the cache coherency attributes for the kseg0 region
(0x8000_0000 - 0x9FFF_FFFF).

2. Hardware creates two boot overlay segments, one for kseg0 and one for kseg1 (corresponding to
SEGCTL1.CFG2 and SEGCTL1.CFG3).

3. Hardware ignores the state of bits 31:30 of the EBase register as well as the Core Local Reset
Exception Base Register [31:30] bits. Instead, hardware forces these bits to a value of 2’b10, causing
the vectors to reside in kseg0/kseg1 space.

When the Config5.K bit is set, the following events occur:

1. The 3-bit Config.K0 field is ignored and the cache coherency attributes are derived from the CFGn_C
fields of the various segmentation control registers (SegCtl0 - SegCtl2).

2. Hardware creates one boot overlay segment that can reside anywhere in virtual address space.

3. The exception vectors are not forced to reside in kseg0/kseg1. Rather, bits 31:30 of the EBase
register, as well as the Core Local Reset Exception Base Register bits [31:30] are used to place the
exception vectors anywhere within virtual address space.

Setting the Memory Addressing Scheme — EVAReset and CONFIG5.K
The EVAReset bit determines the addressing scheme and whether the device boots up in the legacy
setting or the EVA setting. The legacy setting is defined as having the traditional MIPS virtual memory map
used in previous generation processors. The EVA setting places the device in the enhanced virtual address
configuration, where the initial size and function of each segment in the virtual memory map is determined
from the segmentation control registers (SegCtl0 - SegCtl2).

If the EVAReset bit is set at reset, the I7200 core comes up in the legacy configuration and hardware takes
the following actions:

• The CONFIG5.K bit becomes read-write and is programmed by hardware to a value of 0 to indicate the
legacy configuration. In this case, the cache coherency attributes for the kseg0 segment are derived
from the Config.K0 field as described in the previous subsection. In addition to selecting the location
of the cache coherency attributes, the CONFIG5.K bit also causes hardware to generate two boot
exception overlay segments, one for kseg0 and one for kseg1.

• Hardware programs the CP0 memory segmentation registers (SegCtl0 - SegCtl2) for the legacy setting.
An example of this programming is shown in Table 3.11. Note that these registers are new in the
I7200 core and are not used by legacy software. However, they are used by hardware during normal
operation, so their default values should not be changed.

 33

3 Enhanced Virtual Address — Revision 01.20

If the EVAReset bit is set at reset, the I7200 core comes up in the EVA configuration (default is xkseg0
space = 3 GB) and hardware takes the following actions:

• The CONFIG5.K bit becomes read-only and is forced to a value of 1 to indicate the EVA configuration.
In this case, the CONFIG.K0 field is ignored and is no longer used to determine the kseg0 cache
coherency attributes (CCA). Rather, the values in bits 2:0 (segments 0, 2, and 4) and bits 18:16
(segments 1, 3, and 5) of the SegCtl0 - SegCtl2 registers are used to define the CCA for each memory
segment as shown in Table 3.3. In this case, hardware generates only one BEV overlay segment.

• Hardware sets the CP0 memory segmentation registers (SegCtl0 - SegCtl2) for the EVA configuration.

These two options are illustrated in the following figure.

Figure 10: Relationship Between EVAReset and CONFIG5.K at Reset

EVAReset Logic 0

0
K State

R/W

CONFIG5.K Bit statePlaces device in the Legacy setting. in the Legacy setting

EVAReset

Logic 1

Places device in the EVA setting.

Core

1
K State

RO

CONFIG5.K Bit state
in the EVA setting

29

29

Core

Enhanced Virtual Address Detection and Support
As described above, the SegCtl0 - SegCtl2 registers are used to control the various memory segments. In
addition to these registers, two other configuration registers are also used in EVA.

The EVA bit in the Config5 register (Config5.EVA) is used to detect support for the enhanced virtual
address scheme. This read-only bit is always 1 to indicate support for EVA.

In addition to the EVA bit, the SC bit in the Config3 register (Config3SC) is used by hardware to detect the
presence of the SegCtl0 - SegCtl2 registers. This read-only bit is always 1 in the I7200 core to indicate
the presence of these registers. Note that both of these features must be present to configure the virtual
address space for EVA.

Setting the Access Control Mode
In addition to setting the Config5.EVA and Config3.SC bits, each memory segment must be set to the
programmable segmentation mode. Bits 6:4 (segments 0, 2, and 4) and bits 22:20 (segments 1, 3, and 5)
of the SegCtl0 through SegCtl2 registers define the access control mode.

To set the programmable segmentation registers to mimic the traditional MIPS32 virtual address mapping,
the AM and C subfields of each 16-bit CFG field of the SegCtl0 - SegCtl2 registers should be programmed
as shown in the following table.

34

3 Enhanced Virtual Address — Revision 01.20

Table 7: CFG (Segment Configuration) Field Descriptions

CFGn SubfieldsSegCtl
Register

CFGn

AM C

Segment
Size (GB)

Location
in Virtual
Memory
(GB)

Description

0 0

(bits 15:0)

MK

(bits 6:4 = 0x1)

0x3

(bits 2:0)

0.5 3.5 - 4.0 Mapped kernel region.

0 1

(bits 31:16)

MSK

(bits 22:20 = 0x2)

0x3

(bits 18:16)

0.5 3.0 - 3.5 Mapped kernel,
supervisor region.

1 2

(bits 15:0)

UK

(bits 6:4 = 0x0)

0x2

(bits 2:0)

0.5 2.5 - 3.0 Kernel unmapped,
uncached region.

1 3

(bits 31:16)

UK

(bits 22:20 = 0x0)

0x3

(bits 18:16)

0.5 2.0 - 2.5 Kernel unmapped,
cached region.

2 4

(bits 15:0)

MUSK

(bits 6:4 = 0x3)

0x3

(bits 2:0)

1.0 1.0 - 2.0 User, supervisor, and
kernel mapped region.

2 5

(bits 31:16)

MUSK

(bits 22:20 = 0x3)

0x3

(bits 18:16)

1.0 0.0 - 1.0 User, supervisor, and
kernel mapped region.

To set the programmable segmentation registers to implement EVA with a 3.0 GB xkseg0 space, the AM
and C subfields of each CFG field of the SegCtl0 - SegCtl2 registers should be programmed as shown in
the following table.

Table 8: Setting the Access Control Mode for the EVA Configuration

CFGn SubfieldsSegCtl
Register

CFGn

AM C

Segment
Size (GB)

Location
in Virtual
Memory
(GB)

Description

0 0

(bits 15:0)

MK

(bits 6:4 = 0x1)

0x3

(bits 2:0)

0.5 3.5 - 4.0 Mapped kernel region.

0 1

(bits 31:16)

MK2

(bits 22:20 = 0x1)

0x3

(bits 18:16)

0.5 3.0 - 3.5 Mapped kernel region.

1 2

(bits 15:0)

MUSUK

(bits 6:4 = 0x4)

0x2

(bits 2:0)

0.5 2.5 - 3.0 Mapped user/
supervisor, unmapped
kernel region.

1 3

(bits 31:16)

MUSUK

(bits 22:20 = 0x4)

0x3

(bits 18:16)

0.5 2.0 - 2.5 Mapped user/
supervisor, unmapped
kernel region.

2 This segment can also be mapped to MSK (bits 22:20 = 0x2) if supervisor mode is supported.

 35

3 Enhanced Virtual Address — Revision 01.20

CFGn SubfieldsSegCtl
Register

CFGn

AM C

Segment
Size (GB)

Location
in Virtual
Memory
(GB)

Description

2 4

(bits 15:0)

MUSUK

(bits 6:4 = 0x4)

0x3

(bits 2:0)

1.0 1.0 - 2.0 Mapped user/
supervisor, unmapped
kernel region.

2 5

(bits 31:16)

MUSUK

(bits 22:20 = 0x4)

0x3

(bits 18:16)

1.0 0.0 - 1.0 Mapped user/
supervisor, unmapped
kernel region.

MUSUK is an acronym for Mapped User/Supervisor, Unmapped Kernel. This mode sets the kernel
unmapped virtual address space to xkseg0.

Defining the Physical Address Range for Each Memory Segment
As shown in Programmable Segmentation Control on page 31, each of the six 16-bit CFGn fields of
the SegCtl0 through SegCtl2 fields controls a specific portion of the physical address range. Bits 11:9
(segments 0, 2, and 4) and bits 27:25 (segments 1, 3, and 5) of the SegCtl0 through SegCtl2 registers
represent the state of physical address bits 31:29 and defines the starting address of each segment. These
bits control the six segments of the physical address.

Note: Bits 31:28 and bits 15:12 are also part of the physical address field, but they are not used in the
I7200 core and are reserved for future use by devices that implement a 36-bit address.

The following figure shows an example of how each segment of the physical address can be mapped to
the SegCtl0 through SegCtl2 registers.

Figure 11: Mapping of SegCtl 0 - 2 Registers to Physical Address Space

0.0 GB

2.0 GB

3.0 GB

3.5 GB

4.0 GB

2.5 GB

CFG5PA = 0x00

1.0 GB

SegCtl2, bits 31:25 (PA field)

CFG4PA = 0x02 SegCtl2, bits 15:9 (PA field)

CFG3PA = 0x04 SegCtl1, bits 31:25 (PA field)

CFG2PA = 0x05 SegCtl1, bits 15:9 (PA field)

CFG1PA = 0x06 SegCtl0, bits 31:25 (PA field)

CFG0PA = 0x07 SegCtl0, bits 15:9 (PA field)

For example, to program the xkseg0 region to a size of 3.0 GB, the PA field of each register would be
programmed as follows:

36

3 Enhanced Virtual Address — Revision 01.20

Table 9: Programmable Segmentation Register Interface

Register CFGn Field Bits PA Field Memory
Segment

Virtual Address
Range

CFG0 15:9 0x07 0xE000_0000 -
0xFFFF_FFFF

SegCtl03

CFG1 31:25 0x06 0xC000_0000 -
0xDFFF_FFFF

CFG2 15:9 0x05 0xA000_0000 -
0xBFFF_FFFF

SegCtl1

CFG3 31:25 0x04

kseg2

0x8000_0000 -
0x9FFF_FFFF

CFG4 15:9 0x02 0x4000_0000 -
0x7FFF_FFFF

SegCtl2

CFG5 31:25 0x00

xkseg0

0x0000_0000 -
0x3FFF_FFFF

Enhanced Virtual Address (EVA) Instructions
By default, an implementation that supports EVA requires a number of new load/store instructions that
are used when the enhanced virtual address scheme is enabled. These kernel-mode user load/store
instructions allow the kernel mapped access to user address space as if it were in user mode.

For example, the kernel can copy data from user address space to kernel physical address space by using
such instructions with user virtual addresses. Kernel system-calls from user space can be conveniently
changed by replacing normal load/store instructions with these instructions. Switching modes (kernel to
user) is an alternative but this is an issue if the same virtual address is being simultaneously used by the
kernel. Further, there is a performance penalty in context-switching.

The opcode for these instructions is embedded into bits 2:0 of the instruction, known as the Type field.
Note that some fields can have the same encoding depending whether the operation is a load or a store.
The load/store designation is determined by the AIU L/S field, or bits 5:3 of the instruction.

Table 10: Load/Store Instructions in Programmable Memory Segmentation Mode

Instruction
Mnemonic

Instruction Name Description

LBE Load Byte Kernel Load byte (as if user from) kernel extended virtual addressing
load from user virtual memory while operating in kernel mode.

LBUE Load Byte Unsigned Kernel Load byte unsigned (as if user from) kernel.

LHE Load Halfword Kernel Load halfword (as if user from) kernel.

LHUE Load Halfword Unsigned
Kernel

Load halfword unsigned (as if user from) kernel.

LWE Load Word Kernel Load word (as if user from) kernel.

SBE Store Byte Kernel Store byte (as if user from) kernel extended virtual addressing
load from user virtual memory while operating in kernel mode.

SHE Store Halfword Kernel Store halfword (as if user from) kernel.

3 In the 3GB xkseg0 example, the PA portion of the CFG0 and CFG1 fields are not used because they are associated with kernel
mapped address spaces. In this case the PA fields are not required since the physical address is determined by the TLB. In the
maximum configuration, xkseg0 can be extended to 3.5 GB. In this case, the CFG1 field of the SegCtl0 register would become part
of the xkseg0 segment and the PA subfield would be used.

 37

3 Enhanced Virtual Address — Revision 01.20

Instruction
Mnemonic

Instruction Name Description

SWE Store Word Kernel Store word (as if user from) kernel.

3.4 Boot Exception Vector Relocation in Kernel Mode
Historically in MIPS processors, the boot exception vector (BEV) has always been at the same location
in both virtual and physical memory, being mapped from a virtual address of 0xBFC0_0000 to a physical
address of 0x1FC0_0000.

With the advent of memory segmentation, the BEV vector may not always map to a physical address
of 0x1FC0_0000. This can cause a scenario where the boot exception vector resides at two different
physical addresses depending on the memory mode. To address this issue, the I7200 core implements a
boot exception vector overlay scheme that allows the BEV to be mapped to a single location in physical
memory, regardless of the memory mode.

This section describes how to define the BEV overlay segment and the BEV relocation process for both the
legacy setting and the Enhanced Virtual Address (EVA) setting, which is one element of the I7200 memory
segmentation scheme.

Note: Boot exception vector relocation is performed only in Kernel mode.

3.4.1 Boot Configurations
In kernel mode, the core can be powered up in legacy or EVA address setting.

• Legacy setting: The legacy setting is the traditional boot mode followed by all MIPS processor prior to
interAptiv, where the boot exception vector (BEV) is located at 0xBFC0_0000 in virtual address space,
and maps to 0x1FC0_0000 in physical address space.

• EVA setting: In the EVA setting, the boot exception vector can be located anywhere in virtual address
space and mapped to anywhere in physical address space.

3.4.2 Registers and Fields Used to Support Boot Exception Vector Relocation
To facilitate the BEV overlay scheme, a number of pins were added to the I7200 core that allow the user
to select the boot overlay parameters at build time. The initial state of the default values selected by the
user at build time are registered inside the Coherence Manager (CM) block using two Global Configuration
Registers (GCR)

There are two GCR registers used per core: the Core Local Reset Exception Base Register and the Core-
Local Reset Exception Extended Base Register. Each core has its own pair of GCR registers and its own
set of BEV related pins. This allows each core to be programmed in a different manner and independently
from one another.

The CM drives these values to the I7200 cores at reset. Note that the two CGR registers are loaded only
on a cold boot and are programmed with the values selected by the user at build time. Each of these pins
is described in the following subsections.

38

3 Enhanced Virtual Address — Revision 01.20

Field Field Size
(Bits)

CM GCR Register
Mapping

Description

LegacyUseExceptionBase 1 Bit 30 of the Core-
Local Reset Exception
Extended Base Register
(offset = 0x0030)

In the legacy configuration, if the
LegacyUseExceptionBase bit is not
set, then the BEV location defaults to
0xBFC0_0000.

If the LegacyUseExceptionBase bit is set,
address bits Core Local Reset Exception
Base Register [31:30] are forced to a
value of 2’b10 to force the BEV location
into the KSEG0/KSEG1 space.

This bit is only used in the legacy
configuration. There is one
LegacyUseExceptionBase bit per core.

BEVExceptionBaseMask[27:20] 8 Bits 27:20 of the Core-
Local Reset Exception
Extended Base Register
(offset = 0x0030)

Used to determine the size of the boot
exception vector overlay region from 1
MB to 256 MB in powers of two. These
bits are used in both the legacy and
EVA configurations. There is one set of
BEVExceptionBaseMask bits per core.

BEVExceptionBasePA[31:29] 3 Bits 3:1 of the Core-
Local Reset Exception
Extended Base Register
(offset = 0x0030)

Upper physical address bits. The
size of the overlay region defined
by BEVExceptionBasePA[27:20] is
remapped to a location in physical
address space pointed to by the
BEVExceptionBasePA[31:29] bits. This
allows the overlay region to be placed into
one of the 512 MB segments in physical
memory. These pins are used in both the
legacy and EVA configurations. There is
one set of BEVExceptionBasePA bits per
core.

BEVExceptionBase[31:12] 20 Bits 31:12 of the Core-
Local Reset Exception
Base Register (offset =
0x0020)

The Core Local Reset Exception Base
Register [31:12] bits define the boot
address in virtual address space which
is used to define the overlay region.
These pins, along with the Core-Local
Reset Exception Extended Base Register
[27:20] bits, determine the size and
location of the BEV region within virtual
address space.

Note that the CONFIG5.K CP0 register
bit is used to determine which pins of
the Core Local Reset Exception Base
Register bits [31:12] address are used to
calculate the overlay.

These pins are used in the EVA setting
and can also be used in the legacy
setting. There is one set of Core Local
Reset Exception Base Register bits per
core.

3.4.3 Example Mapping of the Boot Exception Vector in the EVA Configuration
In the I7200 core, physical memory sizes can be up to 3.5 GB. In the legacy configuration, the BEV is
remapped from 0xBFC0_0000 in virtual memory to 0x1FC0_0000 in physical memory. However, in the

40

3 Enhanced Virtual Address — Revision 01.20

3. Determine the size and location of the overlay region in virtual address space.

4. Determine the location of the overlay region in physical address space.

Setting the Type of Memory Addressing Mode
The EVAReset bits in the Core-Local Reset Exception Extended Base Register, along with the CONFIG5.K
bit, determines whether the addressing scheme is set to legacy or EVA at reset.

Using theLegacyUseExceptionBase bits in the Core-Local Reset Exception Extended Base Register
and CONFIG5.K to Determine How to Calculate the BEV Base Address
The LegacyUseExceptionBase bits in the Core-Local Reset Exception Extended Base Register and the
CONFIG5.K register bit are also used to determine the addressing scheme and how the location of the
boot exception vector will be calculated. The relationship between the LegacyUseExceptionBase bits in
the Core-Local Reset Exception Extended Base Register and the CONFIG5.K register is shown in Table
3.9. This table shows how to use the various address fields (Core-Local Reset Exception Extended Base
Register [27:20] and Core Local Reset Exception Base Register [31:12]).

Table 12: LegacyUseExceptionBase bits in the Core-Local Reset Exception Extended Base Register
and CONFIG5.K Encoding

CONFIG5.K Bit LegacyUse
ExceptionBase
bits in the Core
Local Reset
Exception
Extended Base
Register

Condition Action

0 0 Legacy Configuration Core Local
Reset Exception Base Register
[31:12] bits are not used.

Use default BEV location of
0xBFC0_0000.

0 1 Legacy Configuration Use only
Core Local Reset Exception Base
Register [29:12] for the BEV base
location. Bits 31:30 are forced to a
value of 2’b10 to put the BEV vector
into KSEG0/KSEG1 virtual address
space.

The BEV location is determined as
follows: Core Local Reset Exception
Base Register [31:12] = 2’b10, Core
Local Reset Exception Base Register
[29:12] bits, 12’b0 Bits 31:30 are
forced to a value of 2’b10 to put the
BEV vector into KSEG0/KSEG1
virtual address space.

1 Don't Care EVA Configuration Use Core Local
Reset Exception Base Register
[31:12] bits.

The Core Local Reset Exception
Base Register [31:12] bits are used
directly to derive the BEV location.
The LegacyUseExceptionBase bits
in the Core-Local Reset Exception
Extended Base Register are ignored.

Determining the Size and Location of the Overlay Region in Virtual Address Space
The starting location of the overlay region in virtual address space is defined using either the Core Local
Reset Exception Base Register [31:12] bits, or the Core Local Reset Exception Base Register [29:12] bits
depending on the state of the LegacyUseExceptionBase bits in the Core-Local Reset Exception Extended
Base Register and CONFIG5.K bit. The size of the overlay region where the BEV is located is determined
using the Core-Local Reset Exception Extended Base Register [27:20] bits as shown in the following table.

42

3 Enhanced Virtual Address — Revision 01.20

Table 13: Encoding of BEVExceptionBaseMask [27:20]

Core-Local Reset Exception Extended Base Register
[27:20]

Segment Size (MB)

00000000 1

00000001 2

00000011 4

00000111 8

00001111 16

00011111 32

00111111 64

01111111 128

11111111 256

Consider the following example:
• The location of the BEV is at 0xBFC0_0000

• The overlay size is 1 MB (BEVExceptionBaseMask [27:20] = 00000000)

• The CONFIG5.K CP0 register bit is set

In this case the BEV segment would be located in virtual address space as shown in the following figure.

Figure 14: Size and Location of Overlay Region in Virtual Address Space — 1 MB Example

0xBFC0_0000

0xBFCF_FFFF
BEV Overlay

Segment
Boot Exception Vector

Core-Local Reset Exception
Extended Base Register [27:20]
= 00000000 indicates an overlay
of 1 MB. In this case, the overlay
segment is aligned to the 1 MB
boundary surrounding the boot
exception vector.

Core-Local Reset Exception
Base Register [31:12] =
0xBFC0_0000 indicates the BEV
base address.

The start of the BEV is aligned on a 1 MB boundary and therefore is at the start of the 1MB address space.
This may not always be the case depending on the size of the overlay region.

In another example:
• The location of the BEV is at 0xBFC0_0000

• The overlay size is 16 MB (BEVExceptionBaseMask [27:20] = 00001111)

 43

3 Enhanced Virtual Address — Revision 01.20

• The CONFIG5.K CP0 register bit is set

In this case the BEV segment would be located in virtual address spac as shown in the following figure.

Figure 15: Size and Location of Overlay Region in Virtual Address Space — 16 MB Example

0xBF00_0000

0xBFFF_FFFF

BEV Overlay
Segment

Boot Exception Vector0xBFC0_0000

Core-Local Reset Exception
Extended Base Register [27:20]
= 00001111 indicates an overlay
of 16 MB. In this case, the
overlay segment is aligned to the
16 MB boundary surrounding the
boot exception vector.

Core-Local Reset Exception
Base Register [31:12] =
0xBFC0_0000 indicates the BEV
base address.

Determining the Location of the Overlay Region in Physical Memory
As described in the previous subsections, the Core Local Reset Exception Base Register [31:12] and
Core-Local Reset Exception Extended Base Register [27:20] fields are used to determine the size and
location of the overlay within virtual address space. This segment of virtual memory is then remapped
to physical memory at a location determined by theBEVExceptionBasePA Field in the Core-Local Reset
Exception Extended Base register. These bits divide the physical address space into a number of 512

44

3 Enhanced Virtual Address — Revision 01.20

MByte segments. For example, in a 4 GB physical address space, the space can be divided into eight 512
MByte segments. This concept is shown in the following figure.

Figure 16: Physical Address Space Segmentation Using BEVExceptionBasePA [31:29]

0 - 0.5 GB

0.5 GB - 1.0 GB

1.0 GB - 1.5 GB

1.5 GB - 2.0 GB

2.0 GB - 2.5 GB

2.5 GB - 3.0 GB

3.0 GB - 3.5 GB

3.5 GB - 4.0 GB

Physical Address

BEVExceptionBasePA[31:29] = 111

BEVExceptionBasePA[31:29] = 110

BEVExceptionBasePA[31:29] = 101

BEVExceptionBasePA[31:29] = 100

BEVExceptionBasePA[31:29] = 001

BEVExceptionBasePA[31:29] = 010

BEVExceptionBasePA[31:29] = 001

BEVExceptionBasePA[31:29] = 000

For example, assume that the boot exception vector resides at a virtual address of 0xBFC0_0000, and
the size of the segment is 1 MB as determined by the BEVExceptionBaseMask[27:20] bits. The physical
memory size (amount of DRAM) is 2 GB, and the boot ROM that contains the BEV has been relocated to
the top 512 MB of the 4 GB physical address space using the BEVExceptionBasePA[31:29] bits, which

 45

4 Memory Protection Unit — Revision 01.20

4 Memory Protection Unit
The I7200 core can optionally be built with a Memory Protection Unit (MPU) instead of a TLB. The main
difference between the MPU and TLB is that the MPU does not perform virtual to physical address translation.
Instead it directly maps program addresses to physical addresses..

The MPU breaks the 4 GB address range into Default Segments. Each Default Segment can be configured for
4 attributes:
• Cache access

• Read

• Write

• Execute protection

For finer control, the Default Segment attributes can be redefined for parts of the Default Segment address
space using Regions, which can overlay parts of a segment’s address space with different values for the 4
attributes.

The MPU does not place restrictions on access permissions. All modes (kernel, user, and debug) are subject
to the same permissions (No separate kernel or user mode address spaces). In addition, all threads are
subject to the same permissions.

Note: Supervisor mode is not supported when an MPU is implemented.

Even though there are no restrictions on access permissions, debug memory spaces are still restricted to
use only in debug mode. Additionally, if MPU segmentation is disabled, user mode access to legacy kernel
segments still causes an address error. While the core is in debug mode, access to DRSEG will not cause
MPU exceptions.

The MPU segmentation can be enabled or disabled by selecting the option at build time. Disabling the MPU
forces a fixed mapping translation (FMT) address translation mechanism using CCA values from the CP0
Config register. This can be used to leverage legacy software and infrastructure. Refer to the K23 and KU
fields of the CP0 Config register (Register 16, Select 0) for more information.

4.1 Default Segment Control Overview
The I7200 core MPU divides the 4 GB memory space into a series of sixteen 256 MB segments. These
fixed size segments can efficiently set the default attributes for each memory address.

The default segments and the register fields that control them are shown in Table 14: Default Memory
Segments on page 48. Each segment contains the following programmable elements:

• Cache Coherency Attributes (CCA): Indicates the coherency attributes for the entire 256 MB
segment.

• Read-Inhibit (RI): Determines if data reads are allowed. If the RI bit of the corresponding segment
control register is set and a data read is attempted anywhere within that 256 MB segment, an exception
occurs.

• Write-Inhibit (WI): Determines if data writes are allowed. If the WI bit of the corresponding segment
control register is set and a data write is attempted anywhere within that 256 MB segment, an exception
occurs.

• Execute-Inhibit (XI): Determines if code fetches are allowed. If the XI bit of the corresponding
segment control register is set and a code fetch is attempted anywhere within that 256 MB segment, an
exception occurs.

For example, a 256 MB segment could be allocated for I/O devices and should allow data reads and writes
but not fetches. In this case, the RI and WI bits for that segment would be programmed with a value of 0,

 47

4 Memory Protection Unit — Revision 01.20

allowing read or write operations to occur. The XI bit would be programmed with a value of 1, indicating
that code fetches are not allowed from that memory segment.

Conversely, for a segment configured for only code fetch accesses, the RI and WI bits would be
programmed with a value of 1, indicating data reads and writes are not allowed, and the XI bit would be
programmed with a value of 0, indicating that code fetches are allowed.

Typically, a combination of default segment mapping and region mapping will be used. The default
attributes from the segment mapping will be overridden if the address is programmed as part of a region.
Any memory space not specifically defined as a region using the Region Control register uses the default
segment mapping.

Each segment is set to the default cache coherency attributes (CCA) and associated permissions. More
details will follow later in this chapter.

Table 14: Default Memory Segments

Segment # Starting Address
15 0xF0000000

14 0xE0000000

13 0xD0000000

12 0xC0000000

11 0xB0000000

10 0xA0000000

9 0x90000000

8 0x80000000

7 0x70000000

6 0x60000000

5 0x50000000

4 0x40000000

3 0x30000000

2 0x20000000

1 0x10000000

0 0x00000000

4.2 Regions Overview

48

4 Memory Protection Unit — Revision 01.20

The MPU can use regions to control finer grain subregions of the address space by overlaying the memory
segment configuration that was discussed in the previously. There can be up to 32 regions. Each region is
divided into 16 equal sized subregions that share attributes.

Figure 18: Regions

Region

16 Subregions

Segment

4.3 CDMM Configuration Registers
MIPS processors that implement an MPU do so with a memory-mapped section called the Common
Device Memory Map (CDMM). The CDMM is a region of physical address space that is reserved for
mapping I/O device configuration registers within a MIPS processor. The CDMM helps aggregate various
device mappings into one area, preventing fragmentation of the memory address space. It also enables the
use of access control and memory address translation mechanisms for these device registers. The CDMM
occupies a maximum of 32 KB in the physical address map.

The base address of the CDMM region is set in the CP0 CDMMBase register.

The 32 KB CDMM region is divided into smaller 64-byte naturally aligned Device Register Blocks (DRBs).
Each block has access control and status registers (ACSRs), followed by I/O device registers. For
implementations that have multiple VPEs, the I/O devices and their ACSRs are instantiated once per VPE,
but the CDMMBase register is shared between the VPEs.

The memory mapped registers located within the CDMM region must be accessed only using uncached
memory transactions.

 49

4 Memory Protection Unit — Revision 01.20

The Fast Debug Channel (FDC) also uses the CDMM region. The FDC is a UART-like communication
device that uses the JTAG probe pins to move data to the external world.

Figure 19: MPU and FDC

MPU

CDMM Region

MPU Offset
(Base + 64 × 3)

FDC

Size
(64 bytes × 3)

CDMMBase

Programming the CP0 CDMMBase Register
The following table shows layout of the CP0 CDMMBase register.

Table 15: CP0 CDMMBase Register

Register Fields

Name Bits
CDMMBase Register

(CP0 Register 15, Select 2)

Reset State

CDMM_UPPER_ADDR 27:11 Bits 31:15 of the base physical address
of the memory mapped registers.

undefined

EN 10 Enables the CDMM region 0

CDMMSize 8:0 number of 64-byte Device Register
Blocks instantiated in the core

Note 0 = 1 64-byte Block

Preset

The base address of the CDMM memory region must be set before MPU registers can be programmed.
The following example code that shows how to program the of the CDMM base address into the
CDMM_UPPER_ADDR field and set the enable bit for the CDMM at the same time.

#define CDMM_P_BASE_ADDR 0x1fc10000 // physical address of the CDMM Register
#define CDMM_Enable (1<<10) // Enable bit 10
li a0, (CDMM_P_BASE_ADDR>>4)|CDMM_Enable) // load CDMM register base address + enable bit
mtc0 a0, C0_CDMMBASE
ehb // ehb remove cp0 hazard

4.4 MPU Configuration Registers
There are two MPU general access and configuration registers.

MPU Access Control and Status Register
The MPU Access Control and Status Register, located at offset 0 of the MPU section of the CDMM region,
provides information on the MPU device type, how many blocks the MPU uses in the CDMM region, and
the MPU revision number. It also has settings for user mode access to all MPU registers.
• Setting the Uw bit allows writing the MPU registers in user mode.

• Setting the Ur bit allows reading the MPU registers in user mode.

50

4 Memory Protection Unit — Revision 01.20

Table 16: MPU Access Control and Status Register

Register Fields

Name Bits
MPU_ACSR Register

(CDMM address + MPU Offset +
0x0000)

Read/Write Reset State

DevType 31:24 MPU Device Type R 0x01

DevSize 21:16 Number of 64-byte blocks allocated to
this device

R Preset

DevRev 15:12 MPU Revision Number R 0x00

Uw 3 Enable User mode write access RW 0

Ur 2 Enable User mode read access RW 0

MPU Configuration Register
The MPU Configuration Register contains the bit to enable the MPU and information on MPU exceptions
when they happen.

Table 17: MPU Configuration Register

Register Fields

Name Bits
MPU_Config Register

(CDMM address + MPU Offset +
0x0008)

Read/Write Reset State

En 31 Enable MPU segment control. Use
FMT mode if not enabled.

R Preset

ExcR 19 Last Protection exception caused by a
load to a RI address.

R 0

ExcW 18 Last Protection exception caused by a
store to a WI address.

R 0

ExcX 17 Last Protection exception caused by a
fetch to a XI address.

R 0

Exc_Reg_Match 16 Last Protection exception hit in region. R 0

Exc_Reg_Num 12:8 Region number for last Protection
exception. Undefined if no region
match.

R 0

NumRegions 4:0 Number of protected regions
implemented.

(Actual = NumRegion +1)

R Preset

4.5 Segments
The attributes for the 16 default segments are programmed into the MPU segment control registers. Each
segment control register is divided into control 4 segments so there are effectively 4 segment control
registers. The following table shows the offset into the MPU section for each register, the segments in each
register, and the bit fields for each segment.

 51

4 Memory Protection Unit — Revision 01.20

Table 18: MPU_Segment Control Register (CDMM address + MPU Offset + 0x0010 + (SegmentCTL
Register Number * 0x4)

29 28 27 26
24

21 20 19 18
16

13 12 11 10 8 5 4 2 2 0SegmentCTL

Register
Number and
Offset

RI WI XI CCA RI WI XI CCA RI WI XI CCA RI WI XI CCA

0 0x10 Segment 3 Segment 2 Segment 1 Segment 0

1 0x14 Segment 7 Segment 6 Segment 5 Segment 4

2 0x18 Segment 11 Segment 10 Segment 9 Segment 8

3 0x1C Segment 15 Segment 14 Segment 13 Segment 12

The following table shows the attributes configured by the segment control register.

Table 19: Attributes Configured by Segment Control Register

Field Description Read/Write Reset State

RI Read inhibit. Trigger MPUL exception on data read. R/W Preset

WI Write inhibit. Trigger MPUS exception on data write. R/W Preset

XI Execute inhibit. Trigger MPUL exception on instruction
fetch.

R/W Preset

CCA Cache Coherency Attributes. R/W Preset

The following example code shows how to set CCA for segment 0 to coherent and uncached for segments
1 - 3.

#define CDMM_P_BASE_ADDR 0x1fc10000 // physical address of the CDMM Register
#define MPU_CDMM_OFFSET (64*3)
#define MPU_SegmentControl0 0x10

// change the MPU CCA setting to cacheable
li a0, CDMM_P_BASE_ADDR // a0 address for CDMM
// Segment 0 set to Cacheable
// Segments 1, 2 and 3 uncached
li a1, (0x2)<<24 | (0x2)<<16 | (0x2)<<8 | (0x5)
sw a1, MPU_CDMM_OFFSET+MPU_SegmentControl0(a0)
sync

4.6 Regions
Regions are used to override the segment defaults. For example, an I/O device may need a small memory
area for configuration and status registers. This area would only need to be accessible using loads or
stores, therefore, for security reasons it would be desirable to prevent execution of instructions in those
smaller areas instead of preventing execution for a whole 256 MB segment. This functionality is one of the
purposes of subregions: to overlay smaller sections of memory with different attributes. Additionally, they
are flexible enough to cover larger areas of the memory map.

52

4 Memory Protection Unit — Revision 01.20

The following figure shows a region for a device's memory mapped registers that overrides the default
attributes by setting the XI bit to inhibit execution for the region's memory range (assuming the whole
region is enabled).

Figure 20: Region within the Address Space

0xF00001FF

0xF0000000

0xE0000000

15

14

13 0xD0000000

Region

0xC000000012

11 0xB0000000

0xA000000010

9 0x90000000

0x800000008

7 0x70000000

0x600000006

5 0x50000000

0x400000004

3 0x30000000

2 0x20000000

0x100000201

0 0x00000000

Segment
Number

Starting
Address

Device Memory-Mapped
I/O 512 byte Region at
0xF0000000 – 0xF00001FF
Override (Set XI so no
execution can take place in
the region)

 53

4 Memory Protection Unit — Revision 01.20

Compared to the previous example of a region within the entire address space, this figure shows just the
region itself. The region is 512 bytes (0x200) made up of 16 enabled subregions of 32 bytes (0x20) all
sharing the same attributes.

Figure 21: 512 byte Region

0xF00001E0

0xF00001C0

15

14

13 0xF00001A0

0xF000018012

11 0xF0000160

0xF000014010

9 0xF0000120

0xF00001008

7 0xF00000E0

0xF00000C06

5 0xF00000A0

0xF00000804

3 0xF0000060

2 0xF0000040

0xF00000201

0 0xF0000000

Subregion
Number

Starting
Address

32 byte
Subregion

512 byte
Region

Not all of the 16 subregions in a region set need to be enabled. If a subregion is not enabled, the attributes
revert to the default segment programming. Subregion enabling is selectable by using the subregion's
address. It is also possible to overlap subregions for even finer attribute control (the end of this chapter
provides several code examples). The following figure shows a 512 byte subregion size and a starting

54

4 Memory Protection Unit — Revision 01.20

address of 0xF000 0200. The enabled subregions start (and end) with subregion 1. The rest of the sub-
regions use the default attributes because they are not enabled.

Figure 22: Enable Only One Region

0xF0001E00

0xF0001C00

15

14

13 0xF0001A00

0xF000180012

11 0xF0001600

0xF000140010

9 0xF0001200

0xF00010008

7 0xF0000E00

0xF0000C006

5 0xF0000A00

0xF00008004

3 0xF0000600

2 0xF0000400

0xF00002001

0 0xF0000000

Subregion
Number

Address

8K Region
Possible

Ethernet Device Memory
Mapped I/O 512 byte
Sub-Region at 0xF0000200 –
0xF00004FF Override (Set XI
so No Execution Can Occur
in the Region)

4.6.1 MPU Region Address and Control Registers
To configure a region, use the region registers starting at CDMM+MPU offset plus an offset of hex 20. Each
region has an address register that configures the address of the starting subregion. Each region also has
a control register that configures the subregion size, number of subregions and their attributes, and an
enable bit to enable the region. The following table shows how the first 2 and the last possible region fall in
the MPU configuration registers.

Table 20: Region Address and Control Registers

Region Number Offset Register
0 0x20 Address

0 0x24 Control

1 0x28 Address

1 0x2C Control

… … …

31 0x118 Address

31 0x11C Control

MPU Region Address Register
The first register in the region configuration set is the base address register.

 55

4 Memory Protection Unit — Revision 01.20

Table 21: Base Address Register Layout

Register Fields

Name Bits
MPU Region Base Address Register

(CDMM address + MPU Offset +
0x0020 + (Region number * 8))

Read/Write Reset State

BaseAddress 31:5 Bits 5 – 31 of the address of the starting
region must be aligned to sub-region size

R/W Undefined

- 5:0 - R 0

BaseAddress is the address of the first subregion of the region to be enabled. The following figure shows
the BaseAddress starting at 0xF000 0200 which is the start of subregion 1.

Figure 23: Region Base Address

0xF0001E00

0xF0001C00

15

14

13 0xF0001A00

0xF000180012

11 0xF0001600

0xF000140010

9 0xF0001200

0xF00010008

7 0xF0000E00

0xF0000C006

5 0xF0000A00

0xF00008004

3 0xF0000600

2 0xF0000400

0xF00002001

0 0xF0000000

Subregion
Number

Address

Example Start at
Subregion 1 Address
0xF0000200

Region Control Register
The second register in the set is the region control register. It contains the enable bit for the region. This
bit enables the subregions starting with the subregion at the base address. The count is the number of
consecutive subregions that are enabled from the starting subregion. Last is the attributes that override the
segment attributes.

Table 22: MPU Region Control Register

Register Fields

Name Bits
MPU Region Control Register

(CDMM address + MPU Offset +
0x0024 + (Region number * 8))

Read/Write Reset State

- 31:16 - R Undefined

56

4 Memory Protection Unit — Revision 01.20

Register Fields

Name Bits
MPU Region Control Register

(CDMM address + MPU Offset +
0x0024 + (Region number * 8))

Read/Write Reset State

EN 15 Enable bit for this region. This bit must
be set in order to enable a given region.

R/W 0

Size 14:10 Size of a subregion in powers of 2 coded
5 – 28 with 5 corresponding to 32 Bytes
and 28 corresponding to 256 MB.

R/W Undefined

Count 9:6 Number of additional consecutive
subregions. Cannot extend beyond the
region size (which is possible when
BaseAddress is not region aligned).

R/W Undefined

RI 5 Read inhibit. Trigger MPUL exception on
data read.

R/W Undefined

WI 4 Write inhibit. Trigger MPUS exception on
data write.

R/W Undefined

XI 3 Execute inhibit. Trigger MPUL exception
on instruction fetch.

R/W Undefined

CCA 2:0 Cache Coherency Attributes. R/W Undefined

In the following figure, subregion 1 starts at 0xF000 0200 instead of 0xF000 0000. Each subregion shares
the same 512 byte size and the count of 3 adds 3 subregions that are enabled in addition to the starting
one. The remaining subregions are not enabled so they retain their segment default attributes.

Figure 24: Region Control Register

0xF0001E00

0xF0001C00

15

14

13 0xF0001A00

0xF000180012

11 0xF0001600

0xF000140010

9 0xF0001200

0xF00010008

7 0xF0000E00

0xF0000C006

5 0xF0000A00

0xF00008004

3 0xF0000600

2 0xF0000400

0xF00002001

0 0xF0000000

Subregion
Number

Address

Example 3

Example 512

Count - Number of
consecutive sub-re-
gions from the first
sub-region (See
BaseAddress in
previous figure)

Size of sub-regions
(all sub-regions for
given region have the
same size)

 57

4 Memory Protection Unit — Revision 01.20

Region Example Code 1
This example sets a region where the first subregion and region address are the same and all 16
subregions are enabled. Given:

• Region: 0

• Subregion size: 64 (0x40) bytes, encoding 6

• Total Region size: 64x16=1024 (0x400) enabled (1024)

• Region addres: 0x1000 0000

• Subregion BaseAddress: 0x1000 0000

• Number of additional subregions: 15

• CCA: 2 (uncached)

• RI: 0 (readable)

• WI: 0 (writable)

• XI: 1 (execute inhibit)

The code is:

0x100003C0

0x10000380

15

14

13 0x10000340

0x1000030012

11 0x100002C0

0x1000028010

9 0x10000240

0x100002008

7 0x100001C0

0x100001806

5 0x10000140

0x100001004

3 0x100000C0

2 0x10000080

0x100000401

0 0x10000000

Subregion
Number

Address

Code:
#define CDMM_P_BASE_ADDR 0x1fc10000
#define MPU_CDMM_OFF (64*3)
#define Region0 0
#define REGION_OFF 0x8
#define REGION_ADDR_REG 0x20
#define REGION_CTL_REG 0x24
#define EN (1<<15) // set enable bit
#define SIZE (6<<10) // set size code 6 (64 bytes)
#define COUNT (15<<6) // 15 additional sub-regions
#define XI 1<<3
#define CCA 2 // uncached CCA

// load start of MPU Registers
la t0, CDMM_P_BASE_ADDR + MPU_CDMM_OFF
// load region BaseAddress
la t1, 0x1000 0000 // Base address of region

Write to base address
sw t1, (Region0 * REGION_OFF + REGION_ADDR_REG)(t0)
li t1, EN|SIZE|COUNT|XI|CCA # Setup control register value
sw t1, (Region0 * REGION_OFF+ REGION_CTL_REG)(t0)

0x3C0

0x380

0x340

0x300

0x2C0

0x280

0x240

0x200

0x1C0

0x180

0x140

0x100

0x0C0

0x080

0x040

0x000

Offset

Region Example Code 2
This example sets a region where the first subregion is not the same as the region address and only 6
subregions are enabled. Changes from the previous example are highlighted. The remaining (disabled)
subregions retain their segment default attributes. Given:

• Region: 0

• Subregion size: 64 (0x40) bytes, encoding 6

• Total Region size: 64x16=1024 (0x400) enabled (1024)

• Region addres: 0x1000 0000

58

4 Memory Protection Unit — Revision 01.20

• Subregion BaseAddress: 0x1000 00C0
• Number of additional subregions: 5
• CCA: 2 (uncached)

• RI: 0 (readable)

• WI: 0 (writable)

• XI: 1 (execute inhibit)

The code is:

Code:
#define CDMM_P_BASE_ADDR 0x1fc10000
#define MPU_CDMM_OFF (64*3)
#define Region0 0
#define REGION_OFF 0x8
#define REGION_ADDR_REG 0x20
#define REGION_CTL_REG 0x24
#define EN (1<<15) // set enable bit
#define SIZE (6<<10) //set size code 6 (64 bytes)
#define COUNT (5<<6) // 5 addi ional sub-regions
#define XI 1<<3
#define CCA 2 // uncached CCA

// load start of MPU Registers
la t0, CDMM_P_BASE_ADDR + MPU_CDMM_OFF
// load region BaseAddress
la t1, 0x1000 00C0 // Base address of subregion

Write to base address
sw t1, (Region0 * REGION_OFF + REGION_ADDR_REG)(t0)
li t1, EN|SIZE|COUNT|XI|CCA # Setup control register value
sw t1, (Region0 * REGION_OFF+ REGION_CTL_REG)(t0)

0x100003C0

0x10000380

15

14

13 0x10000340

0x1000030012

11 0x100002C0

0x1000028010

9 0x10000240

0x100002008

7 0x100001C0

0x100001806

5 0x10000140

0x100001004

3 0x100000C0

2 0x10000080

0x100000401

0 0x10000000

Subregion
Number

Address

0x3C0

0x380

0x340

0x300

0x2C0

0x280

0x240

0x200

0x1C0

0x180

0x140

0x100

0x0C0

0x080

0x040

0x000

Offset

Region Example Code 3
This example shows an additional region with different attributes and overlaps an enabled subregion of a
lower numbered region. region 0 is the same as example 2 and region 1 is at a different starting subregion
address (highlighted). The starting subregion in region 1 overlaps subregion 8 of region 0.

The attributes of a higher numbered region take precedence over any overlapping subregions. Therfore,
subregion 8 uses the attribute settings of region 1. The remaining (disabled) subregions retain their
segment default attributes.

 59

4 Memory Protection Unit — Revision 01.20

Code:
#define CDMM_P_BASE_ADDR 0x1fc10000
#define MPU_CDMM_OFF (64*3)
#define Region1 1
#define REGION_OFF 0x8
#define REGION_ADDR_REG 0x20
#define REGION_CTL_REG 0x24
#define EN (1<<15) // set enable bit
#define SIZE (6<<10) //set size code 6 (64 bytes)
#define COUNT (5<<6) // 5 addi ional sub-regions
#define CCA 2 // uncached CCA

// load start of MPU Registers
la t0, CDMM_P_BASE_ADDR + MPU_CDMM_OFF
// load region BaseAddress
la t1, 0x1000 0200 // Base address of subregion
Write to base address
sw t1, (Region0 * REGION_OFF + REGION_ADDR_REG)(t0)
li t1, EN|SIZE|COUNT|CCA # Setup control register value
sw t1, (Region1 * REGION_OFF+ REGION_CTL_REG)(t0)

0x100003C0

0x10000380

15

14

13 0x10000340

0x1000030012

11 0x100002C0

0x1000028010

9 0x10000240

0x100002008

7 0x100001C0

0x100001806

5 0x10000140

0x100001004

3 0x100000C0

2 0x10000080

0x100000401

0 0x10000000

Subregion
Number

Address

0x3C0

0x380

0x340

0x300

0x2C0

0x280

0x240

0x200

0x1C0

0x180

0x140

0x100

0x0C0

0x080

0x040

0x000

Offset

Region 1

Region 0

Region Example Code 4
This example creates a region that spans segments. A region covers the entire 4 GB of address space
by using a 256 MB subregion and a starting address of 0; 16 subregions equal 4 GB. 7 subregions are
enabled, covering the lower 2 GB of memory.

Code:
#define CDMM_P_BASE_ADDR 0x1fc10000
#define MPU_CDMM_OFF (64*3)
#define Region0 0
#define REGION_OFF 0x8
#define REGION_ADDR_REG 0x20
#define REGION_CTL_REG 0x24
#define EN (1<<15) // set enable bit
#define SIZE (0x1C<<10) // set size code 0x1C (256 MB)
#define COUNT (7<<6) // 7 addi ional subregions
#define CCA 2 // uncached CCA

// load start of MPU Registers
la t0, CDMM_P_BASE_ADDR + MPU_CDMM_OFF
// load region BaseAddress
la t1, 0x0000 0000 // Base address of subregion
Write to base address
sw t1, (Region0 * REGION_OFF + REGION_ADDR_REG)(t0)
li t1, EN|SIZE|COUNT|CCA # Setup control register value
sw t1, (Region0 * REGION_OFF+ REGION_CTL_REG)(t0)

0xF00001FF

0xE0000380

15

14

13 0xD0000340

0xC000030012

11 0xB00002C0

0x1000028010

9 0x90000240

0x800002008

7 0x700001C0

0x600001806

5 0x50000140

0x400001004

3 0x300000C0

2 0x20000080

0x100000201

0 0x00000000

Region
Number

Starting
Address

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

Segment
Number

60

4 Memory Protection Unit — Revision 01.20

Number of MPU Regions
It may be useful to know how many regions are available. The MPU_Config register stores the number of
regions in the NumRegions field. This value is static and is pre-built into the core. The core can be built
with 8, 12, 16, 20, 24, 28, or 32 regions.

Table 23: Finding the Number of MPU Regions

Register Fields

Name Bits
MPU_Config Register

(CDMM address + MPU Offset + 0x0008)

Read/Write Reset State

NumRegions 4:0 Number of protected regions implemented.

(Actual = NumRegion +1)

R Preset

4.7 MPU and Segment Control
When the MPU is configured, segment-control registers are not supported. However, some capabilities,
such as BEV relocation, are retained.

The following table highlights the differences and supported capabilities in these modes.

Table 24: TLB, FMT, and MPU Capabilities

TLB FMT MPU
MMU Type tlb fmt mpu-seg

MPU Support
Configured

None MPU-segment is de-configured
MPU-region is configured

MPU-segment and MPU-regions
are enabled

MPU Segment N/A Disabled permanently Enabled permanently

MPU Region N/A Default is off. It is possible to
turn on MPU Regions.

Default is off.

When MPU Regions are turned
on:
• In overlapping regions and

segments, CCA, XI, RI, and
WI are defined by MPU-
region takes priority over
MPU-segments.

• VA-to-PA mapping is still
VA=PA regardless of MPU-
region being enabled or
disabled.

SegCtl, EVA,
Overlay

Yes No No

BEV
Relocation

Yes Yes Yes

K0, K23, KU,
CV

K23 = RO - 0

KU = RO - 0

K0 = R/W – 2

Config5.K = R/W – 0

Config5.CV = R/W - 0

K23 = R/W - 2

KU = R/W - 2

K0 = R/W – 2

Config5.K = RO – 0

Config5.CV = RO - 0

K23 = RO - 0

KU = RO - 0

K0 = RO – 0

Config5.K = RO – 0

Config5.CV = RO - 1

 61

4 Memory Protection Unit — Revision 01.20

TLB FMT MPU
Notes Standard TLB configuration

with Segment Control Register
support.

Fully supports:
• EVAReset
• LegacyUserExceptionBase
• BEVExceptionBaseMask
• BEVExceptionBasePA
• BEVExceptionBase

The core operates in FMT
mapping mode.

EVAReset (Core-Local Reset
Exception Extended Base
Register 0x30) is expected to be
0.

LegacyUseExceptionBase is
controllable by software. If this
bit is 0, core boots at bfc0_0000
or legacy boot.

BEVExceptionBaseMask[27:20]
is unused.

BEVExceptionBasePA[31:29]
is unused. This mode does not
support PA relocation.

BEVExceptionBase[31:12]
is used if
LegacyUseExceptionBase =
1. Bits [31:30] are tied to 2'b10
because the boot-vector must
be located within kseg1.

The core operates in FMT
mapping mode.

EVAReset (Core-Local Reset
Exception Extended Base
Register 0x30) is expected to be
0.

LegacyUseExceptionBase is
controllable by software. If this
bit is 0, core boots at bfc0_0000
or legacy boot.

BEVExceptionBaseMask[27:20]
is unused.

BEVExceptionBasePA[31:29]
is unused. This mode does not
support PA relocation.

BEVExceptionBase[31:12]
is used if
LegacyUseExceptionBase = 1.

 62

5 Caches — Revision 01.20

5 Caches
The I7200 Multiprocessing System (MPS) contains the following caches: L1 instruction, L1 data, and shared
L2. These caches provide on-chip temporary storage of information that can be retrieved much faster than
accessing main memory. The dedicated L1 instruction and data caches have the fastest access times and
are accessed first. If the data is not present in the L1 cache, the shared L2 cache is accessed. The L2 cache
contains both data and instructions, hence the name ‘shared’. If the requested data is not in the L2 cache, the
main memory is accessed.

When configured with an MPU, the I7200 L1 instruction and data caches support up to a maximum of 128 KB,
improving L1 hit rates and performance.

Table 25: I7200 Cache Configurations

Attribute L1 Instruction Cache L1 Data Cache L2 Cache
Size4 4 KB, 8 KB, 16 KB, 32 KB,

64 KB, (or 128 KB with
MPU)

4 KB, 8 KB, 16 KB, 32 KB,
64 KB, (or 128 KB with
MPU)

0, 128 KB, 256 KB, 512 KB,
1024 KB, 2048 KB, 4096
KB, 8192 KB

Line Size 32 Bytes 32 Bytes 32 or 64 Bytes

Number of Cache Sets Cache Size/32 B Cache Size/32B 0, 256, 512, 1024, 2048,
4096, 8192, 16384, 32768

Associativity 4 way 4 way 8 way

This chapter provides an overview of the cache architecture and a description of the elements that go into
programming the caches. A description of the CP0 register interface to each cache is provided, as well as
cache initialization code. Other programmable elements include setting up cache coherency and handling
cache exceptions.

5.1 Caches Substem Overview

4 For Linux-based applications, MIPS recommends an optimum L1 cache size of 64 KB, and a minimum L1 cache size of 32 KB.

 63

5 Caches — Revision 01.20

Attribute With Parity5

Replacement LRU

Cache Locking per line

Data Array

Read Unit 64b x 4 (no parity), 72b x 4 (parity)

Write Unit 64b x 4 (no parity), 72b x 4 (parity)

Tag Array

Read Unit 24b x 4 (no parity) 25b x 4 (parity)

Write Unit 24b (no parity) 25b (parity)

Way-Select Array

Read Unit 6b

Write Unit 1-6b

Figure 26: L1 Instruction Cache Organization

Parity
1

Valid
1

Lock
1

PA[31:10]
22

Tag (per Way)
23 bits Total

Parity
9 6

DWORD
64

Data (per Way)
79 bits Total

LRU
6

Way Select
6 bits Total

L1 Instruction Cache Virtual Aliasing
The instruction cache on the I7200 core is virtually indexed and physically tagged. The lower bits of the
virtual address are used to access the cache arrays and the physical address is used in the tags. Because
the way size can be larger than the minimum TLB page size, there is a potential for virtual aliasing. This
means that one physical address can exist in multiple indices within the cache, if it is accessed with
different virtual addresses. Virtual aliasing comes into effect only for cache sizes that are larger than 16 KB
and when using the TLB-based MMU.

In the I7200 core, the Config7IAR bit is set to indicate the existence of instruction cache virtual aliasing
hardware based on cache size and MMU type. The core allows a physical address to reside at multiple
indices if accessed with different virtual addresses. When an invalidate request is made due to the CACHE
or SYNCI instructions, the core will serially check each possible alias location for the given physical
address.

The hardware can be enabled and disabled using the Config7IVAD bit. When this bit is cleared, the
hardware used to remove instruction cache virtual aliasing is enabled. In this case the virtual aliasing is
managed in hardware. No software interaction is required. When the Config7IVAD bit is set, the virtual
aliasing hardware is disabled. This can be done when software ensures that no cache aliases are possible,
for example when using a minimum TLB page size of 16 KB. In cases where the TLB page size is less than
16 KB, it is up to software to manage virtual aliasing within the instruction cache.

L1 Instruction Cache Line Locking
The I7200 core does not support the locking of all 4 ways of either cache at a particular index. If all 4 ways
of the cache at a given index are locked by either Fetch and Lock or Index Store Tag CACHE instructions,
subsequent cache misses at that cache index will displace one of the locked lines.

5 Only applies if parity is supported.

 65

5 Caches — Revision 01.20

Locking lines in the caches is somewhat counter to the idea of coherence. If a line is locked into a
particular cache, it is expected that any processes utilizing that data will be locked to that processor
and coherence is not needed. Based on this usage model, locking coherent lines into the cache is not
recommended. However, should this occur, the CPU adheres to the following rules:
• SYNCI instructions are user-mode instructions. Because locking is a kernel mode feature (requires the

CACHE instruction), SYNCI is not allowed to unlock cache lines. This applies to both local and globalized
SYNCI instructions.

• Locking overrides coherence. Intervention requests from other CPUs and I/O devices that match on a
locked line are treated as misses.

• Self-intervention requests for globalized CACHE instructions are allowed to affect a locked line. This is
done primarily for handling lock and unlock requests for kseg0 addresses when kseg0 is being treated
coherently.

L1 Instruction Cache Memory Coherence Issues
The I7200 core supports software cache coherency in a multi-CPU cluster. Software must explicitly
manage instruction cache coherence via the CACHE or SYNCI instructions to invalidate a line and pick up
new data from L2 cache or main memory. These operations are globalized—if the address used in the
operation has a coherent CCA, the request will be sent to all instruction caches in the cluster.

In the I7200 core, the hardware does not automatically keep the instruction caches coherent with the data
caches. Doing so requires many additional cache lookups and would likely require the instruction cache tag
array to be duplicated as well. For many types of code, this would be of small benefit, and the added area
and power costs would not make sense. Further, the existing non-coherent cores from MIPS do not keep
the I-Cache coherent with the D-Cache, so the code already exists for software I-Cache coherence where
it is required. Globalized CACHE and SYNCI instructions ease the task of software I-Cache coherence.
Existing, single-CPU routines that push dirty data out of the data cache and invalidate stale instruction
cache lines using hit-type CACHE or SYNCI instructions can be globalized, and the coherence can be
handled for all of the instruction caches in parallel.

Software I-Cache Coherence (JVM, Self-modifying Code)
The CPU does not support hardware I-Cache coherence, so code that modifies the instruction stream must
clean up the instruction cache. This is equivalent to what is currently required on uniprocessor systems that
also do not have a coherent I-Cache. The recommended SYNCI sequence shown below will also work for
coherent addresses:
SW instn_address
SYNCI instn_address
SYNC
JR.HB instn_address
NOP

L1 Instruction Software Cache Management
The L1 instruction cache is not fully “coherent” and requires OS intervention at times. The CACHE
instruction is the building block of such OS interventions, and is required for correct handling of DMA data
and for cache initialization. Historically, the CACHE instruction also had a role when writing instructions.
Unless the programmer takes the appropriate action, those instructions may only be in the D-cache and
would need them to be fetched through the I-cache at the appropriate time. Wherever possible, use the
SYNCI instruction for this purpose.

A cache operation instruction is written cache op, s(rs) where s(rs) is an address format (register
plus immediate), written as for a load/store instruction. Cache operations are privileged and can only run in
kernel mode (SYNCI works in user mode).

66

5 Caches — Revision 01.20

Table 27: Fields in the Encoding of a CACHE Instruction

31 26 25 21 20 18 17 16 15 14 11 10 9 8 7 0

101001 op rs s[8 0111 0 01 s[7:0]

The op field packs together a 5-bit field. The lower 2 bits of this field (17:16) select which cache to work on:
• 00—L1 I-cache

• 01—L1 D-cache

• 10—Reserved

• 11—L2 cache

The upper 3-bits of the OP field encodes a command to be carried out on the line the instruction selects.

The CACHE instruction come in three varieties which differ in how they pick the cache entry (the “cache
line”) they will work on:
• Hit-type cache operation: presents an address (just like a load/store), which is looked up in the cache.

If this location is in the cache (it “hits”) the cache operation is carried out on the enclosing line. If this
location is not in the cache, nothing happens.

• Address-type cache operation: presents an address of some memory data, which is processed just
like a cached access—if the cache was previously invalid the data is fetched from memory.

• Index-type cache operation: as many low bits of the address as are required are used to select the
byte within the cache line, then the cache line address inside one of the four cache ways, and then
the way. The size of the cache (contained within the Config1 register) to know exactly where the field
boundaries are located. The address is used as follows:

31 5 4 0

Unused Way 1-0 Index byte-within-
line

Note: The MIPS32 specification allows the CPU designer to select whether to derive the index from the
virtual or physical address. For index-type operations, MIPS recommends using a kseg0 address, so
that the virtual and physical address are the same. This also avoids a potential of cache aliasing.

5.1.2 L1 Data Cache
The L1 data cache is similar to the instruction cache, with a few key differences.
• The dirty bit is part of the way-select RAM.

• To handle store bytes, the data array is byte-accessible, and the data parity is 1 bit per byte (if parity is
supported).

• If ECC is supported, an ECC code is generated across a 32b word. Reads and writes are 32 or 64b.
Sub-word stores are handled by doing a read-modify-write sequence.

Like the L1 instruction cache, the L1 data cache is virtually indexed, because a virtual address is used
to select the appropriate line within each of the arrays. The cache is physically tagged, as the tag array
contains a physical, not virtual, address.

The tag and data arrays hold 4 ways of information per set, corresponding to the 4-way set associativity of
the cache. The way-select array holds information to choose the way to be filled, as well as dirty bits in the
case of the data cache.

A tag entry consists of the upper bits of the physical address bits [31:10], a valid bit, and a lock bit. A data
entry contains the four, 64-bit doublewords in the line, for a total of 32 bytes. All four words in the line are
present or not in the data array together, hence the single valid bit stored with the tag. Once a valid line is
resident in the cache, byte, halfword, triple-byte, word, or doubleword stores can update all or a portion of
the words in that line. The tag and data entries are repeated for each of the 4 lines in the set.

 67

5 Caches — Revision 01.20

A way-select entry holds bits choosing the way to be replaced according to a Least Recently Used (LRU)
algorithm. The LRU information applies to all the ways and there is one way-select entry for all the ways in
the set.

Table 28: L1 Data Cache Organization

Attribute Without Parity With Parity7 With ECC8

Size9
0 KB, 4 KB, 8 KB, 16 KB,
32 KB, 64 KB, or 128 KB

0 KB, 4 KB, 8 KB, 16 KB,

32 KB, 64 KB, or 128 KB

0 KB, 4 KB, 8 KB, 16 KB,

32 KB, 64 KB, or 128 KB

Line Size 32-byte 32-byte 32-byte

Number of Cache Sets 32, 64, 128, 256, or 512 32, 64, 128, 256, or 512 32, 64, 128, 256, or 512

Associativity 4-way 4-way 4-way

Replacement LRU LRU LRU

Cache Locking per line per line per line

Data Array

Read Unit 64b x 4 72b x 4 78b x 4

Write Unit 8b 9b 39b

Tag Array

Read Unit 24b x 4 25b x 4 31b x 4

Write Unit 24b 25b 31b

Way-Select Array

Read Unit 10b 14b 22b

Write Unit 1-10b 1-14b 1-22b

L1 Data Cache Virtual Aliasing
The data cache on the I7200 core is virtually indexed and physically tagged. The lower bits of the virtual
address are used to access the cache arrays and the physical address is used in the tags. Because the
way size can be larger than the minimum TLB page size, there is a potential for virtual aliasing. This means
that one physical address can exist in multiple indices within the cache, if it is accessed with different virtual
addresses.

The following table indicates the conditions under which virtual aliasing can occur.

Table 29: L1 Data Cache Virtual Aliasing Conditions

Cache Size MMU Page Size Way Size Aliasing Can Occur Hardware Aliasing
Fix Required

32 KB 4 KB 8 K Yes Yes

64 KB 4 KB 16 K Yes Yes

32 KB ≥ 16 KB 8 K No No

64 KB ≥ 16 KB 16 K No No

In the I7200 core, the read-only Config7AR bit determines whether the data cache virtual aliasing hardware
is enabled based on the build-time configuration. Note that for some of the configuration options in the

7 Only applies if parity is supported.
8 Only applies if ECC is supported.
9 For Linux based applications, MIPS recommends a 64 KB L1 instruction cache size, with a minimum size of 32 KB.

68

5 Caches — Revision 01.20

table above, the hardware aliasing fix (HWAF) is required. As such, it is incumbent upon the designer to
select the HWAF option at build time. The selection of this option causes hardware to set the Config7AR bit.

L1 Data Cache Line Locking
The mechanism for line locking in the L1 data cache is identical to that of the L1 instruction cache. For
more information, refer to L1 Instruction Cache Line Locking on page 65.

L1 Data Cache Memory Coherence Protocol
The I7200 core supports cache coherency in a multi-CPU cluster using Cache Coherence Attributes
(CCAs) specified on a per cache-line basis and an Intervention Port containing coherent requests by all
CPUs in the system. Each I7200 core monitors its Intervention Port and updates the state of its cache lines
(valid, lock, and dirty tag bits) accordingly.

The L1 data caches utilize a standard MESI protocol. Each cache line will be in one of the following four
states:
• Invalid: The line is not present in this cache.

• Shared: This cache has a read-only copy of the line. The line may be present in other L1 data caches,
also in a shared state. The line will have the same value as it does in the L2 cache or memory.

• Exclusive: This cache has a copy of the line with the right to modify. The line is not present in other L1
data caches. The line is still clean - consistent with the value in L2 cache or memory.

• Modified: This cache has a dirty copy of the line. The line is not present in other L1 data caches. This is
the only up-to-date copy of the data in the system (the value in the L2 cache or memory is stale).

The SYNC instruction may also be useful to software in enforcing memory coherence, because it flushes
the write buffers.

Some of the basic characteristics of the coherence protocol are summarized below. Coherence can occur
on the data cache.
• Writeback cache: Uses a writeback cache to ensure high performance

• Cache-line based: Coherence and ownership is maintained per 32-byte cache line

• Snoopy protocol: Each CPU snoops the stream of transactions and updates its cache state
accordingly

• Invalidate: A line is invalidated from the cache (possibly with a writeback to memory) when a store from
another processor is seen.

5.1.3 L1 Instruction and Data Cache Software Testing
Typically, the cache RAM arrays will be tested using BIST. It is, however, possible for software running
on the processor to test all of the arrays. Of course, testing of the I-cache arrays should be done from an
uncacheable space with interrupts disabled in order to maintain the cache contents. There are multiple
methods for testing these arrays in software, some of which are described in the following subsections

L1 Instruction Cache Tag Array
The L1 instruction cache tag array can be tested via the Index Load Tag and Index Store Tag varieties of
the CACHE instruction. An Index Store Tag writes the contents of the ITagLo and ITagHi registers into the
selected tag entry. An Index Load Tag reads the selected tag entry into the ITagLo and ITagHi registers.

If parity is implemented, the parity bits can be tested as normal bits by setting the PO (parity override) bit in
the ErrCtl register. This will override the parity calculation and use the parity bits in ITagLo and ItagHi as the
parity values.

Instruction Cache Data Array
This array can be tested using the Index Store Data and Index Load Tag varieties of the CACHE instruction.
The Index Store Data variety is enabled by setting the WST bit in the ErrCtl register.

 69

5 Caches — Revision 01.20

If parity is implemented, the parity bits in the array can be tested by setting the PO bit in the ErrCtl register.
This will use the PI field in ErrCtl instead of calculating the parity on a write.

The rest of the data bits are read/written to/from the IDataLo and IDataHi registers.

Instruction Cache Way Select Array
The testing of this array is done with via Index Load Tag and Index Store Tag CACHE instructions. By
setting the WST bit in the ErrCtl register, these operations will read and write the WS array instead of the
tag array.

L1 Data Cache Tag Array
The L1 data cache tag array can be tested via the Index Load Tag and Index Store Tag varieties of the
CACHE instruction. An Index Store Tag writes the contents of the DTagLo register into the selected tag
entry. An Index Load Tag will read the selected tag entry into the DTagLo register.

If parity is implemented, the parity bits can be tested as normal bits by setting the PO (parity override) bit
in the ErrCtl register. This will override the parity calculation and use the parity bits in DTagLo as the parity
values.

If ECC is implemented, the ECC bits can be tested as normal bits by setting the PO (parity override) bit in
the ErrCtl register. This overrides the ECC calculation and uses the ECC bits in the DTagHi register as the
ECC values.

Duplicate Data Cache Tag Array
This array can be tested via the Index Load Tag and Index Store Tag varieties of the CACHE instruction. To
access the duplicate tags, set both the WST and SPR bits of ErrCtl. Index Store Tag will write the contents
of the TagLo register into the selected tag entry. Index Load Tag will read the selected tag entry into the
TagLo. In normal mode, with WST and SPR cleared, IndexStoreTags will write into both the primary and
duplicate tags, while IndexLoadTags will read the primary tag.

If parity is implemented, the parity bit can be tested as a normal bit by setting the PO bit in the ErrCtl
register. This will override the parity calculation and write P bit in TagLo as the parity value.

Data Cache Data Array
This array can be tested using the Index Store Tag CACHE, SW, and LW instructions. First, use Index Store
Tag to set the initial state of the tags to valid with a known physical address (PA). Write the array using SW
instructions to the PAs that are resident in the cache. The value can then be read using LW instructions
and compared to the expected data.

If parity is implemented, the parity bits can be implicitly tested using this mechanism. The parity bits can
be explicitly tested by setting the PO bit in ErrCtl and using Index Store Data and Index Load Tag CACHE
operations. The parity bits (one bit per byte) are read/written to/from the PD field in ErrCtl. Unlike the I-
cache, the DataHi register is not used, and only 32b of data is read/written per operation.

Data Cache Way Select Array
The dirty and LRU bits can be tested using the same mechanism as the I-cache WS array.

5.1.4 Batch Cache Operation
Traditional MIPS cache control instructions are achieved using the CACHE, PREF, and SYNCI instructions.
These instructions operate on a single memory location (either word or cache-line). To invalidate and write-
back multiple cache lines (8 cache-line blocks), the I7200 core L1 data and instruction caches have batch
flush controls. CP0 includes two registers to facilitate these batch operations:
• CP0[22][0]: Batch Cache Operation Configuration Register - BatchCacheOpControl

• CP0[22][1]: Batch Cache Operation Status Register - BatchCacheOpStatus (per TC)

70

5 Caches — Revision 01.20

A typical operation starts by using MTC0 to program the BatchCacheOpControl register with the following
information:
• Starting virtual address.

• Number of subsequent 8 cache-line blocks.

• Desired operation: invalidate, write-back, or a combination of these operations.

• Cache on which to operate (I-cache or D-cache).

Write 1'b1 into the PAGE_START_ADDR field to initiate the procedure. The program can monitor the
BatchCacheOpStatus register to determine whether the batch operation has completed successfully. At
the end of the operation, the program should read RESULT to determine whether the batch operation
has completed without failure or exceptions (e.g., no interrupts, cache errors, or TLB and MPU related
exceptions).

Instead of operating on a virtual address range (determined by the BatchCacheOpControl register), the
program can operate on the entire cache: an Index operation flushes the entire cache, a Page operation
performs a normal address flush.

The batch flush operation has the following known and expected limitations:

• If a register/field is not initialized (i.e., has a value of X), and a batch operation was attempted, the result
is UNPREDICTABLE.

• Batch operation is not atomic: interrupts, cache error exceptions, and bus errors can terminate the
operation. The core does not automatically restart this operation. The software is required to restart this
operation by resetting the batch cache operation register fields and reinitiating the batch operation.

• This operation blocks the pipeline. Other TCs and VPEs within the core do not execute, which prevents
another TC or VPE from performing another batch cache operation.

• The batch operation does not operate beyond a single page. It begins with the starting address and
traverses for the number of cache-lines determined by the BatchCacheOpControl register. If a TLB or
MPU exception is detected, the batch operation stops and the error status is reported in the RESULT
register field.

• This operation does not cause TLB or MPU exceptions (because MTC0 does not exert TLB or MPU
exceptions). Software should ensure that the target page is accessible and in the TLB or MPU region.

• This operation does not cause address-related exceptions; breakpoints and watchpoint exceptions are
ignored.

• Unlike the CACHE instruction, this feature does not operate on SPRAMs.

5.1.5 L2 Cache
The L2 cache processes transactions that are not serviced by the L1 cache. L2 is generally larger than the
L1 cache, but slower, due to the use of higher-density memories.

The L2 communicates with external memory via an AMBA AXI interface. The L2 cache is integrated into
the Coherence Manager (CM), which reduces both latency and complexity.

The L2 also communicates with the CPU(s) through the performance counter interface, error reporting
interface, and other side band signals. In addition to these interfaces, the L2 has the clock, reset, and
bypass signals as well as some static input signals that can be used to configure it for different operating
modes.

The following table shows the list of possible L2 cache configurations.

 71

5 Caches — Revision 01.20

Table 30: Valid and Invalid L2 Cache Configurations

Line Size Sets per Way Number of Ways Total L2 Cache
Size

Valid L2 Cache
Configuration

Notes

32 bytes 512 8 128 KBytes Yes

32 bytes 1024 8 256 KBytes Yes

32 bytes 2048 8 512 KBytes Yes

32 bytes 4096 8 1 MByte Yes

32 bytes 8192 8 2 MBytes Yes

32 bytes 16384 8 4 MBytes Yes

32 bytes 32768 8 8 MBytes Yes

64 bytes 64 8 32 KBytes Yes No ECC

64 bytes 128 8 64 KBytes Yes No ECC

64 bytes 256 8 128 KBytes Yes No ECC

64 bytes 512 8 256 KBytes Yes

64 bytes 1024 8 512 KBytes Yes

64 bytes 2048 8 1 MByte Yes

64 bytes 4096 8 2 MBytes Yes

64 bytes 8192 8 4 MBytes Yes

64 bytes 16384 8 8 MBytes Yes

64 bytes 32768 8 16 MBytes No 32768 sets/way
valid only with 32
byte line size

0K L2 Cache Option
The I7200 MPS contains a 0K cache option that is selected during IP configuration. If the Enable L2 option
is selected, the cache size field can be used to select the cache size between 128 KB and 8 MB. If this
option is not selected, the L2 cache is disabled and the cache size field is not available (0K option).

32K and 64K L2 Cache Options
The I7200 MPS contains 32K and 64K cache options that are selected during IP configuration. These
options are supported only when the L2 cache is configured with a 64-byte line size and without ECC.

Cacheable vs. Uncacheable vs. Uncached Accelerated
The L2 cache supports cacheable and uncacheable accesses. This information also is conveyed on
the AxCACHE field. Cacheable operations access the cache memories, whereas an uncached access
bypasses the L2 cache arrays and is sent directly to the main memory.

Uncached accelerated accesses are treated the same way as non-accelerated uncached accesses. This
CCA enables uncached transactions to better utilize bus bandwidth via burst transactions. L2 supports
single-beat as well as 4-beat burst uncacheable transactions for both read and write operations.

72

5 Caches — Revision 01.20

Sleep Mode Using the WAIT Instruction
In addition to slowing down or stopping the primary cm_clk input, software may initiate low-power Sleep
Mode via the execution of the WAIT instruction in the processor.

When the processor enters into Sleep Mode, it will assert SI_Sleep. The SI_Sleep drives the SI<n>_Sleep
input to the L2. All cores should assert SI<n>_Sleep. The L2 then enters a low-power state and asserts the
L2_Sleep output when all outstanding bus activity has completed. Most clocks in the L2 will be stopped, but
a handful of flops remain active to sense the wake up call from the processor, which is the deassertion of
SI<n>_Sleep.

Power is reduced because the global clock goes to the vast majority of flops within the L2, which are held
idle during this period. There is no bus activity while the L2 is in sleep mode, so the system bus logic which
interfaces to the L2 could be placed into a low power state as well.

When the L2 samples SI<n>_Sleep asserted and there is no activity in the L2, the L2 asserts L2_Sleep two
cm_clks later. Any activity in the L2 will delay the start of L2_Sleep assertion.

Internal Dynamic Sleep Mode
When there is no activity at the input pins of the L2 cache and all pending transactions from the CPU are
completed, the L2 cache will eventually empty. When this occurs, the L2 cache turns off the l2_clk signal
after some small delay.

Besides programmable power control using the WAIT instruction to induce sleep mode, the L2 is also
equipped with dynamic global clock gating. When there are no pending transactions in the L2 cache, the L2
shuts down the majority of internal clocks to save power. This action is not programmable.

.

Bypass mode
Bypassmode is a test/bringup feature that causes the L2 cache to forward all requests received from the
CM directly to the system memory interface. Entering or exiting from Bypass Mode other than at reset
requires flushing of the L2 cache while running from uncached memory to restore the L2 cache state to a
stable state. In bypass mode, all requests are forwarded to the system as received including L2 CACHE
instructions.

Note: Bypass mode is strictly a debug feature and is not intended to be a normal mode of operation. It is
not intended for active switching during normal operation.

L2 Cache Fetch and Lock
In the L2 cache, each line in a way can be locked independently. If a line is locked it will not be evicted.
Software is not allowed to lock all available ways at the same cache index, since L2 would be unable to
refill any other addresses at that index.

If the requested address is not contained in the L2 cache, the line is refilled and then locked in the cache.
The LRU bits in the WS array are updated to make the fetched way most-recently-used. The dirty bit and
the dirty parity bit are set to clean.

On a hit the L2 cache line is locked and the operation retires. The LRU bits or the dirty bits are not affected.

 L2 Cache Flush
An L2 flush operation can only be initiated by software. To flush the entire L2 cache in one operation,
perform the following steps:

1. Read the L2SM_COP_REG_PRESENT bit in the L2 Cache Op State Machine Config/Control register
(GCR_L2SM_COP) at offset address 0x0620 in GCR address space to determine if this register is
present. A ‘1’ in this bit indicates that the flush cache operation is supported.

2. Read the L2SM_COP_MODE bit in the L2 Cache Op State Machine Config/Control register to
determine the state of the L2 state machine. This bit must be 0, indicating the state machine is idle, for
the flush operation to proceed.

 73

5 Caches — Revision 01.20

3. Program the L2SM_COP_TYPE field in bits 4:2 of the L2 Cache Op State Machine Config/Control
register to a value of 0x0. This selects the full cache flush operation.

4. Program the L2SM_COP_CMD field in bits 1:0 of the L2 Cache Op State Machine Config/Control
register to a value of 0x1. This starts the cache flush operation.

5. To determine the result of the flush operation, poll the L2SM_COP_RESULT field in bit 8:6 of the L2
Cache Op State Machine Config/Control register. A value of 0x0 indicates the process is still running.
A value of 0x1 indicates that the process completed with no errors.

 L2 Burst Operations
The L2 Cache supports the following burst operations (CacheOps):

• Hit_Inv

• Hit_WB_Inv

• Hit_WB

These operations can be requested only by software and can be performed on a range of addresses in
the cache. Burst operations can be executed using the following procedure. Note that the number of cache
lines requested must be less than or equal to the available cache lines in the cache and also less than
65,536.

1. Program the starting address where the flush operation begins into the
L2SM_COP_START_TAG_ADDR field in bits 47:6 of the GCR L2 Cache Op State Machine Tag
Address register (GCR_L2SM_TAG_ADDR_COP) at offset address 0x0628 in GCR address space.

2. Program the L2SM_COP_NUM_LINES field in bits 63:48 of the GCR L2 Cache Op State Machine Tag
Address register to indicate the number of lines to be flushed from the starting address defined in step
1.

3. Program the type of operation to be performed on each line using the L2SM_COP_TYPE field in bits
4:2 of the L2 Cache Op State Machine Config/Control register. A value of 0x4 in this field indicates
Hit Invalidate. A value of 0x5 indicates Hit Writeback Invalidate, and a value of 0x6 indicates Hit
Writeback.

4. Read the L2SM_COP_MODE bit in the L2 Cache Op State Machine Config/Control register to
determine the state of the L2 state machine. This bit must be 0, indicating the state machine is idle, in
order for the CacheOp to proceed.

5. If the state machine is idle as determined in step 4, program the L2SM_COP_CMD field in bits 1:0 of
the L2 Cache Op State Machine Config/Control register to a value of 0x1. This initiates the CacheOp
starting from the address defined in step 1 and continuing for the number of lines defined in step 2.
The operation to be performed in each of the selected cache lines is defined in step 3.

6. To determine the result of the flush operation, poll the L2SM_COP_RESULT field in bit 8:6 of the L2
Cache Op State Machine Config/Control register. A value of 0x0 indicates the process is still running.
A value of 0x1 indicates that the process completed with no errors.

5.2 Cache Coherency Attributes
The I7200 core defines a set of Cache Coherency Attributes (CCA).

The I7200 core supports the following cacheability attributes:

• Uncached (0x2) : Addresses in a memory area indicated as uncached are not read from the cache.
Stores to such addresses are written directly to main memory, without changing cache contents.

• Non-coherent Writeback With Write Allocation (0x3): Loads and instruction fetches first search the
cache, reading main memory only if the desired data does not reside in the cache. On data store
operations, the cache is first searched to see if the target address is in the cache. If it is, the cache
contents are updated, but main memory is not written. If the cache lookup misses on a store, main
memory is read to bring the line into the cache and merge it with the new store data. Hence, the

74

5 Caches — Revision 01.20

allocation policy on a cache miss is read- or write-allocate. Data stores will update the appropriate
dirty bit in the ‘dirty’ array to indicate that the line contains modified data. When a line with dirty data is
displaced from the cache, it is written back to memory.

• Coherent Write-back With Write Allocation, Exclusive (0x4): This attribute is similar to Coherent Write-
back With Write Allocation, Exclusive on Write, except that load misses bring data into the cache in the
exclusive state rather than the shared state. This can be used if data is not shared and will eventually
be written. This can reduce bus traffic, because the line does not have to be refetched in an exclusive
state when a store is done.

• Coherent Write-back With Write Allocation, Exclusive on Write (0x5): Use coherent data. Load misses
will bring the data into the cache in a shared state. Multiple caches can contain data in the shared state.
Stores will bring data into the cache in an exclusive state - no other caches can contain that same line.
If a store hits on a shared line in the cache, the line will be invalidated and brought back into the cache
in an exclusive state.

• Uncached Accelerated (0x7) : Uncached stores are gathered together for more efficient bus utilization.

5.3 Register Interface
This section provides information on the CP0 registers used to manage the L1 instruction and data caches,
and the L2 cache.

5.3.1 L1 Instruction Cache CP0 Register Interface
The I7200 core uses CP0 registers for instruction cache operations.

Table 31: Instruction Cache CP0 Register Interface

CP0 Registers CP0 Number
Config1 16.1

CacheErr 27.0

ITagLo 28.0

ITagHi 29.0

IDataLo 28.1

IDataHi 29.1

Config1 Register (CP0 register 16, Select 1)
The Config1IS field (bits 24:22) indicates the number of sets per way in the instruction cache.

The Config1IL field (bits 21:19) indicates the line size for the instruction cache. The I7200 L1 instruction
cache supports a fixed line size of 32 bytes as indicated by a default value of 4 for this field.

The Config1IA field (bits 18:16) indicates the set associativity for the instruction cache. The I7200 L1
instruction cache is fixed at 4-way set associative as indicated by a default value of 3 for this field.

CacheErr Register (CP0 register 27, Select 0)
The CacheErr register is a read-only register used to determine the status of a cache error. The upper two
bits of this register (CacheErrEREC) indicate whether the contents of the register pertain to an L1 instruction
cache error, an L1 data cache error, a TLB error, or an external error. This register provides information
such as:
• L1 data versus L2 data cache error

• Tag RAM versus Data RAM error

• External snoop request indication in multi-core systems

 75

5 Caches — Revision 01.20

• Indicates coherent L1 cache error in another CPU in a multi-core system

• Fatal/non-fatal error indication

• Indicates if the error affects the Scratchpad RAM

• Indicates the cache index or Scratchpad RAM index of the double word entry where the error occurred

L1 Instruction Cache TagLo Register (CP0 register 28, Select 0)
These registers are a staging location for cache tag information being read/written with cache load-tag/
store-tag operations.

The interpretation of this register changes depending on the setting of the ErrCtlWST and ErrCtlSPR bits.
• Default cache interface mode (ErrCtlWST = 0, ErrCtlSPR = 0)

• Diagnostic "way select test mode" (ErrCtlWST = 1, ErrCtlSPR = 0)

• For scratchpad memory setup (ErrCtlWST = 0, ErrCtlSPR = 1)

L1 Instruction Cache DataLo Register (CP0 register 28, Select 1)
Staging registers for special cache instruction which loads or stores data from or to the cache line. Two
registers (IDataHi, IDataLo) are needed, because the I7200 core loads I-cache data at least 64 bits at a
time. This register stores the lower 32 bits of the load data.

L1 Instruction Cache DataHi Register (CP0 register 29, Select 1)
Staging registers for special cache instruction which loads or stores data from or to the cache line. Two
registers (IDataHi, IDataLo) are needed, because the I7200 core loads I-cache data at least 64 bits at a
time. This register stores the upper 32 bits of the load data.

5.3.2 L1 Data Cache CP0 Register Interface
The I7200 core uses CP0 registers for data cache operations.

Table 32: Data Cache CP0 Register Interface

CP0 Registers CP0 Number
Config1 16.1

CacheErr 27.0

DTagLo 28.2

DTagHi 29.1

DDataLo 28.3

Config1 Register (CP0 register 16, Select 1)
The Config1DS field (bits 15:13) indicates the number of sets per way in the data cache.

The Config1DL field (bits 12:10) indicates the line size for the data cache. The I7200 L1 data cache
supports a fixed line size of 32 bytes as indicated by a default value of 4 for this field.

The Config1DA field (bits 9:7) indicates the set associativity for the data cache. The I7200 L1 data cache is
fixed at 4-way set associative as indicated by a default value of 3 for this field.

CacheErr Register (CP0 register 27, Select 0)
The CacheErr register is a read-only register used to determine the status of a cache error. The upper two
bits of this register (CacheErrEREC) indicate whether the contents of the register pertain to an L1 instruction
cache error, an L1 data cache error, a TLB error, or an external error.

76

5 Caches — Revision 01.20

L1 Data Cache TagLo Register (CP0 register 28, Select 2)
These registers are a staging location for cache tag information being read/written with cache load-tag/
store-tag operations.

In a multi-core system, the D-cache has five logical memory arrays associated with this DTagLo register.
The tag RAM stores tags and other state bits with special attention to the needs of the CPU. The duplicate
tag RAM also stores tags and state, but is optimized for the needs of interventions. Both of these arrays
are set-associative (4-way). The Dirty RAM and duplicate Dirty RAM store the dirty bits (indicating modified
data) for CPU and intervention uses, and each combine their ways together in a single entry per set. The
WS RAM combines the dirty and LRU data in a single entry per set. Accessing these arrays for index
cache loads and stores is controlled by using three bits in the ErrCtl register to create modes that allow the
correct access to these arrays.

The interpretation of this register changes depending on the settings of ErrCtlWST, ErrCtlDYT, and ErrCtlSPR.

L1 Data Cache TagHi Register (CP0 register 29, Select 2)
The DTagHi register is used to store ECC error information (if ECC is supported) for the L1 data cache and
DSPRAM memories. The bit assignments of the register depends on the type of memory being accessed.
On a DSPRAM ECC error, bits 19:0 contain ECC error information. On a L1 data cache tag or data error,
bits 16:10 contains data RAM ECC information, and bits 6:0 contain tag RAM error information.

L1 Data Cache DataLo Register (CP0 register 28, Select 3)
In the I7200 core, software can read or write cache data using a cache index load tag/index store data
instruction. Which word of the cache line is transferred depends on the low address fed to the cache
instruction.

Note: The I7200 core does not implement the DDataHi register.

5.3.3 L2 Cache CM GCR Control Registers
The I7200 Coherency Manager (CM) uses the GCR registers for L2 cache operations. Note that these
registers are located in CM address space. They are not located in CP0 space like the L1 instruction and
data cache control registers. This is unlike most previous MIPS cores, which do store L2 configuration
information in the CP0 registers. The CP0 Config5.L2C field indicates that the L2 cache information is
stored in a memory mapped register instead of CP0.

Note: Refer to the I7200 CM2.6 Registers HTML file for detailed information on the GCR registers.

5.4 Cache Initialization Routines
The cache must be initialized during power-up or reset to place the lines of the cache in a known state.
This is accomplished via the boot code (or, for the L2, by hardware as described in the previous section).
This section provides individual routines for initializing the L1 instruction, L1 data, and L2 caches.

5.4.1 L1 Instruction Cache Initialization
The following sample boot code provides an example initialization routine for the instruction cache.

// ====== Initialize L1 instruction cache

li r4, 0x8 // invalidate whole icache
mtc0 r4, $22, 0 // C0_BCOP
ehb

5.4.2 L1 Data Cache Initialization
The following sample boot code provides an example initialization routine for the data cache.

// ====== Initialize L1 data cache
Initial_DCache:

 77

5 Caches — Revision 01.20

 li r4, 0x9 //invalidate whole dcache
 mtc0 r4, $22, 0 //C0_BCOP
 ehb

5.4.3 L2 Cache Initialization
The following sample boot code provides an example initialization routine for the L2 cache.

// ====== Initialize CM and L2 cache

#define GCR_L2SM_COP 0x0620
#define L2SM_COP_MODE_SHIFT 5
#define L2SM_COP_MODE_BITS 1
#define GCR_CONFIG_ADDR 0x1fbf8000 // Boot address of the GCR registers change as needed

li t4, GCR_CONFIG_ADDR

li t2, L2SM_COP_CMD_START // NOTE command type is 0x0: Index WB Inv/Index Inv
 // (Full cache flush) and Start Command "1" is first
 // 2 bits
sw t2, GCR_L2SM_COP(t4) // Write L2 Configuration register
sync
lw t3, GCR_L2SM_COP(t4)
ext t3, t3, L2SM_COP_MODE_SHIFT, L2SM_COP_MODE_BITS
bnez t3, L2_Running

5.5 Setting the Memory Space Cache Coherency
For non-MPU cores, the Cache Coherency attribute for a mapped address is set by the TLB entry for that
address. If the address resides in the KSGE0 memory range, the CCA is set in the Config.K0 field. The
following code shows how this is done.

Note that the code that does the modification of the CCA for KSEG0 cannot be executed from a KSGE0
address. Rather, it must be done in KSEG1 or an uncached address (not KSGE0 uncached). For the I7200
the CCA is set to coherent because all cached access for the I7200 are coherent.

LEAF(change_k0_cca)
 // NOTE! This code must be executed in KSEG1 (not KSGE0 uncached)
 // Set CCA for kseg0 to cacheable
 mfc0 $14, C0_CONFIG // read C0_Config
 li $15, 5 // CCA for coherent cores (fall through)

 set_kseg0_cca:
 ins $14, $15, 0, 3 // insert K0
 mtc0 $14, C0_CONFIG // write C0_Config
 jalrc.hb zero, ra

 END(change_k0_cca)

For MPU Cores the cache attribute is set in the segment configuration registers:

#define CDMM_P_BASE_ADDR 0x1fc10000 // physical address of the CDMM Register
 // (Change to suit your core)
#define MPU_CDMM_OFFSET (64*3)
#define MPU_SegmentControl0 0x10
li a0, CDMM_P_BASE_ADDR
li a1, (0x2)<<24|(0x2)<<16|(0x2)<<8|(0x5) // Segment 0 set to CWB (Cacheable, coherent,
 // write-back, write-allocate, read misses
 // request Shared)
sw a1, MPU_CDMM_OFFSET+MPU_SegmentControl0(a0) // Segment 0 address 0~0x0FFFFFFF to cacheable
sync

 78

6 Exceptions — Revision 01.20

6 Exceptions
An exception is defined as any event that causes the core to halt normal execution and branch to a dedicated
kernel software routine called an exception handler. The exception handler is responsible for determining and
then resolving the exception.

Exception events can occur within the core (internal events), or external to the core (external events).
Internal events include arithmetic overflows, traps, watch address match, reserved instructions, misses in the
translation lookaside buffer (TLB), etc. A complete list of exceptions is shown in Table 4.5.

An external event is known as an interrupt. These are generated by asserting dedicated hardware interrupt
pins. When a pin is asserted, an exception is taken. The kernel software then halts execution of the current
instruction stream and branches to the interrupt handler to determine and resolve the interrupt. The MIPS
architecture provides three types of hardware interrupt modes as described in Exception Processing Overview
on page 79.

This chapter provides an overview of exception processing and a definition of the interrupts modes. It also
covers information on how to program the reset, boot, and general exception vectors in memory. A list of
exception priorities is provided, along with an assembly language example of an exception handler.

6.1 Exception Processing Overview
The I7200 core includes support for three interrupt modes:

• Interrupt Compatibility mode: The behavior of the I7200 core is identical to the behavior of an
implementation of Release 1 of the Architecture.

• Vectored Interrupt (VI) mode: Adds the ability to prioritize and vector interrupts to a handler dedicated to
that interrupt.

• External Interrupt Controller (EIC) mode: Redefines the way interrupts are handled to provide full
support for an external interrupt controller that handles prioritization and vectoring of interrupts. The
presence of this mode is denoted by the VEIC bit in the Config3 register. Note that the Global Interrupt
Controller (GIC) serves as the external interrupt controller when the system is in EIC mode. Refer to the
GIC chapter in this manual for more information.

Following reset, the I7200 core defaults to Interrupt Compatibility mode.

Exception Types
Exceptions may be precise or imprecise. Precise exceptions are those for which the EPC can be used to
identify the instruction that caused the exception. For precise exceptions, the restart location in the EPC
register is the address of the instruction that caused the exception.

Conversely, imprecise exceptions are those for which no return address can be identified. A bus error is an
example of an imprecise exception.

Detecting an Exception
When an exception is detected, the core takes the following actions:

• Suspends the normal sequence of instruction execution

• Loads the Exception Program Counter (EPC) register with the location where execution can restart after
the exception has been serviced

• Enters kernel mode

• Forces execution of the software exception handler located at a specific address

 79

6 Exceptions — Revision 01.20

Once invoked, the exception handler should save the context of the processor, including the contents of the
program counter, the current operating mode, and the status of the interrupts (enabled or disabled). This
context is saved so that it can be restored when the exception has been serviced.

Exception Conditions
When a precise exception condition occurs, the instruction causing the exception and all those that follow it
in the pipeline are cancelled. Accordingly, any stall conditions and any later exception conditions that may
have referenced this instruction are inhibited. The value in the EPC (or ErrorEPC for errors or DEPC for
debug exceptions) is sufficient to restart execution. It also ensures that exceptions are taken in program
order.

Imprecise exceptions are taken after the instruction that caused them has completed and potentially after
following instructions have completed.

6.2 Exception Vector Locations
Historically in MIPS processors, the boot exception vector (BEV) is at a fixed location in both virtual
and physical memory; it is mapped from a virtual address of 0xBFC0_0000 to a physical address of
0x1FC0_0000. For an MPU core, BEV is hard-coded into the core using the Configuration Options for CM
Exception Vector setting in the core configuration GUI. The numbers in the following table are offsets to
that address.

Table 33: Exception Vectors

The VPE has 2 modes: boot mode (offset shown in column 2) and normal running mode after the boot
process has been completed (offset shown in column 3).
Exception Type CP0[STATUS][BEV] = 1

Boot Exception Vector Offset

STATUS[BEV] = 0 CP0[EBase][WG] = 1

CP0[EBase][ExcBase] offset

Reset/NMI 0x0000 NA

TLB Miss 0x0200 0x0000

Cache Error 0x0300 0x0100 (CP0[Config5][CV] = 1)

General Exception 0x0380 0x0180

Interrupt (IV=1) 0x0400 0x0200

Debug 0 0x0480 NA

Debug 1 0xff200200 NA

Upon power-up of the I7200 core, the VPE is in boot mode. The CP0[Status][BEV] register's mode bit is
preset to 1 at power on (BEV=1) so that when the core powers up VPE0 fetches the first instruction of the
boot code from the Boot Exception Vector address. The boot code must be linked to start at this address.

All memory is uncached and directly mapped. Virtual program memory addresses from 0x0000 0000
to 0x7fff ffff are mapped directly to physical memory 0x0000 0000 to 0x7fff ffff. Only the lower 2 GB are
available for use, therefore, the physical address on the boot device must be located in this range. The
core can be switched to MPU mode at any time, usually during the boot process. In MPU mode, the VPE
can access the complete 32-bit address range, (4 GB).

At power up (BEV=1), the exception vectors are offset from the Boot Exception Vector. The exception
routines must be linked to the Boot Exception Vector offsets as shown in Table 33: Exception Vectors on
page 80.

After the boot code finishes all of its tasks it usually sets CP0[Status][BEV]=0. The VPE then switches from
using the Boot Exception Vectors to using Exception vectors starting at the Exception Base address. The
boot code should program this Exception Base address into CP0[EBase][ExcBase].

80

6 Exceptions — Revision 01.20

The Exception Base address defaults to a restricted address range (corresponding to 2 memory segments,
KSEG0 and KSEG1) for all MIPS processors. These memory segments range from 0x8000 0000 to 0xbfff
ffff. This restricted range is enforced by gating the top 2 bits (30, 31) of the exception base address to 1
0 respectively. This setting is usually too restrictive for an MPU core, and can be overridden by clearing
the Write Gate bit, CP0[EBase][WG]. Once this bit is cleared, bits 30 and 31 of CP0[EBase][ExcBase] are
writable and the Exception Base address can be placed on a 4K boundary anywhere in memory.

The Cache Error exception vector also defaults to a restricted address for all MIPS processors. That
address corresponds to an address located in the KSEG1 memory segment. KSEG1 is an uncached
segment that cannot be changed to cacheable, which is appropriate for a Cache Error routine. The vector
address is 0xa000 0100. This setting is usually too restrictive for a MPU core and can be overridden by
clearing the Cache Vector bit CP0[Config5][CV]. Once the Cache Vector bit is cleared, the Cache Error
vector is located at offset 0x100 from the Exception Base Address.

Note: The Cache Error Exception address must be uncached. The MPU Super segment that contains
the Exception vectors could be set to cached. You should program a sub-region overlay to ensure that the
cache error address range offset from 0x100 to 0x200 is uncached. See the MPU chapter for more details
on region programming.

Related Concepts
Refer to the MPU chapter for more information on MPU programming. on page 47

6.3 Defining the Exception Vector Locations
The location of the exception vector in the I7200 core depends on the operating mode. If the core is in
the legacy setting, the exception vector location is the same as in previous MIPS processors. However, if
the core is configured for Enhanced Virtual Address (EVA), the exception vector can effectively be placed
anywhere within kernel address space.

The EVAReset bit determines the addressing scheme and whether the device boots up in the legacy
setting or the EVA setting. The legacy setting is defined as having the traditional MIPS virtual memory map
used in previous generation processors. The EVA setting places the device in the enhanced virtual address
configuration, where the initial size and function of each segment in the virtual memory map is determined
from the segmentation control registers (SegCtl0 - SegCtl2).

If the EVAReset bit is not set at reset, the I7200 core comes up in the legacy configuration and hardware
takes the following actions:
• The CONFIG5.K bit becomes read-write and is programmed by hardware to a value of 0 to indicate the

legacy configuration. In this case, the cache coherency attributes for the kseg0 segment are derived
from the Config.K0 field as described in the previous subsection. In addition to selecting the location
of the cache coherency attributes, the CONFIG5.K bit also causes hardware to generate two boot
exception overlay segments, one for kseg0 and one for kseg1.

• Hardware programs the CP0 memory segmentation registers (SegCtl0 - SegCtl2) for the legacy setting.
Note that these registers are new in the I7200 core and are not used by legacy software. However, they
are used by hardware during normal operation, so their default values should not bechanged.

If the EVAReset bit is asserted at reset, the I7200 core comes up in the EVA configuration (default is
xkseg0 space = 3 GB) and hardware takes the following actions:

• The CONFIG5.K bit becomes read-only and is forced to a value of 1 to indicate the EVA configuration.
In this case, the CONFIG.K0 field is ignored and is no longer used to determine the kseg0 cache
coherency attributes (CCA). Rather, the values in bits 2:0 (segments 0, 2, and 4) and bits 18:16
(segments 1, 3, and 5) of the SegCtl0-SegCtl2registersare used to define the CCA for each memory
segment. In this case, hardware generates only one BEV overlay segment.

• Hardware sets the CP0 memory segmentation registers (SegCtl0 - SegCtl2) for theEVA configuration.

When the LegacyUseExceptionBase bit is 0 and the Config5.K bit is cleared, the device is in legacy mode.
In this mode the exception vector location defaults of 0xBFC0_0000 and the Core Local Reset Exception
Base Register bits [31:12] are ignored.

 81

6 Exceptions — Revision 01.20

When the LegacyUseExceptionBase is set and the Config5.K bit is cleared, the device is still in legacy
mode, but the Core Local Reset Exception Base Register bits [29:12] are used to indicate the location of
the exception vector. Bits 31:30 are forced to a value of 2’b10, placing the exception vector somewhere in
kseg0/kseg1 space.

If the Config5.K bit is set, the device is in EVA mode. In this case theLegacyUseExceptionBase bit is
ignored and the Core Local Reset Exception Base Register bits [31:12] are used to derive the location of
the exception vector.

The function of the Config5.Kbit and the LegacyUseExceptionBase bit are shown in the following table. For
more information on EVA mode, refer to Memory Management Unit on page 17.

Table 34: LegacyUseExceptionBase bit and CONFIG5.K Encoding

CONFIG5.K Bit LegacyUse
ExceptionBase
bit

Condition Action

0 0 Legacy Mode

SI_ExceptionBase[31:12] pins are not
used.

Use default BEV location of
0xBFC0_0000.

0 1 Legacy Mode

Legacy Mode Use only Core Local
Reset Exception Base Register bits
[29:12] for the BEV base location.
Bits 31:30 are forced to a value of
2’b10 to put the BEV vector into
KSEG0/KSEG1 virtual address
space.

The BEV location is determined as
follows:

Core Local Reset Exception Base
Register bits [31:12] = 2’b10, Core
Local Reset Exception Base Register
bits [29:12], 12’b0

Bits 31:30 are forced to a value of
2’b10 to put the BEV vector into
KSEG0/KSEG1 virtual address
space.

1 Don’t care EVA Mode

Use Core Local Reset Exception
Base Register bits [31:12].

The Core Local Reset Exception
Base Register bits [31:12] are used
directly to derive the BEV location.
The LegacyUseExceptionBase bit is
ignored.

Another degree of flexibility in the selection of the vector base address, for use when StatusBEV equals
1, is provided via LegacyUseExceptionBase, Core Local Reset Exception Base Register bits [31:12], and
Core-Local Reset Exception Extended Base Register BEVExceptionBaseMask field [27:20].

In the legacy setting, when the SI_UseExceptionBase pin is 0, the Reset, Soft Reset, NMI, and EJTAG
Debug exceptions are vectored to a specific location, as shown in Table 35: Exception Vector Base
Addresses: Legacy Mode, LegacyUseExceptionBase bit Is Not Set on page 83. Addresses for
all other exceptions are a combination of a vector offset and a vector base address. In the I7200
core, software is allowed to specify the vector base address via the EBase register for exceptions
that occur when StatusBEV equals 0. Table 35: Exception Vector Base Addresses: Legacy Mode,
LegacyUseExceptionBase bit Is Not Set on page 83 shows the vector base address when the core is in
legacy setting and the SI_UseExceptionBase pin is 0.

Table 36: Exception Vector Base Addresses: Legacy Mode, LegacyUseExceptionBase Is Set
on page 83 shows the vector base addresses when the core is in legacy setting and the
LegacyUseExceptionBase bit is set. As can be seen in Table 36: Exception Vector Base Addresses:
Legacy Mode, LegacyUseExceptionBase Is Set on page 83, when the LegacyUseExceptionBase bit is
set, the exception vectors for cases where StatusBEV = 0 are not affected.

82

6 Exceptions — Revision 01.20

Table 35: Exception Vector Base Addresses: Legacy Mode, LegacyUseExceptionBase bit Is Not Set

Exception StatusBEV
10

0 1
Reset, NMI 0xBFC0.0000

EJTAG Debug (with ProbEn = 0, in
the EJTAG_Control_register and
DCR.RDVec=0)

0xBFC0.0480

EJTAG Debug (with ProbEn = 0, in
the EJTAG_Control_register and
DCR.RDVec=1)

DebugVectorAddr[31:7] || 2b0000000

EJTAG Debug (with ProbEn = 1 in
the EJTAG_Control_register)

0xFF20.0200

Cache Error EBase31..30 || 1 || EBase28..12 || 0x000
Note that EBase31. 30 have the fixed
value of 2b’10

0xBFC0.0300

Other EBase31..12 || 0x000 Note that
EBase31..30 have the fixed value of
2’b10

0xBFC0.0200

In legacy mode, when the LegacyUseExceptionBase bit is not set, the Reset, Soft Reset, NMI, and EJTAG
Debug exceptions are vectored to a specific location, as shown in the following table.

Table 36: Exception Vector Base Addresses: Legacy Mode, LegacyUseExceptionBase Is Set

Exception StatusBEV
11

0 1
Reset, NMI 0b10 || Core Local Reset Exception Base Register bits [29:12] || 0x000

EJTAG Debug (with ProbEn = 0 in
the EJTAG_Control_register and
DCR.RDVec=0)

0b10 || Core Local Reset Exception Base Register bits [29:12] || 0x480

EJTAG Debug (with ProbEn = 0 in
the EJTAG_Control_register and
DCR.RDVec=1)

DebugVectorAddr[31:7] || 2b0000000

EJTAG Debug (with ProbEn = 1 in
the EJTAG_Control_register)

0xFF20.0200

Cache Error EBase31..30 || 1 || EBase28..12 || 0x000

Note that EBase31. 30 have the fixed
value 2’b10. Exception vector resides
in kseg1.

0b101 || Core Local Reset Exception
Base Register bits [28:12] || 0x300

Exception vector resides in kseg1.

Other EBase31..12 || 0x000

Note that EBase31. 30 have the fixed
value 2’b10 Exception vector resides
in kseg0/kseg1.

0b10 || Core Local Reset Exception
Base Register bits [29:12] || 0x200

Exception vector resides in kseg0/
kseg1.

Table 37: Exception Vector Offsets on page 84 shows the offsets from the vector base address as a
function of the exception. Note that the IV bit in the Cause register causes interrupts to use a dedicated
exception vector offset, rather than the general exception vector. Table 6.25 (on page 346) shows the offset

10 "||" denotes bit string concatenation.
11 "||" denotes bit string concatenation.

 83

6 Exceptions — Revision 01.20

from the base address in the case where StatusBEV = 0 and CauseIV = 1. Table 39: Exception Vectors on
page 84 combines these three tables into one that contains all possible vector addresses as a function
of the state that can affect the vector selection. To avoid complexity in the table, it is assumed that IntCtlVS
= 0.

Table 37: Exception Vector Offsets

Exception Vector Offset
TLB Refill, EXL = 0 0x000

General Exception 0x180

Interrupt, CauseIV = 1 0x200 (In Release 3 implementations, this is the base of
the vectored interrupt table when StatusBEV = 0)

Reset, NMI None (uses reset base address)

In EVA mode, when the LegacyUseExceptionBase bit is ignored and the Reset, Soft Reset, NMI, and
EJTAG Debug exceptions are vectored to a location determined by the programming of the three Segment
Control registers (SegCtl0 - SegCtl2), as shown in the following table.

Table 38: Exception Vector Base Addresses — EVA Mode

StatusBEV 12Exception
0 1

Reset, NMI Core Local Reset Exception Base Register bits [31:12] || 0x000

EJTAG Debug (with ProbEn = 0

in the EJTAG_Control_register and

DCR.RDVec=0)

Core Local Reset Exception Base Register bits [31:12] || 0x480

EJTAG Debug (with ProbEn = 0

in the EJTAG_Control_register and

DCR.RDVec=1)

DebugVectorAddr[31:7] || 2b0000000

EJTAG Debug (with ProbEn = 1 in
the EJTAG_Control_register)

0xFF20.0200

Cache Error EBase31..12 || 0x000 Core Local Reset Exception Base
Register bits [31:12] || 0x300 (Forced
uncached)

Other EBase31..12 || 0x000 Core Local Reset Exception Base
Register bits [31:12] || 0x200

Table 39: Exception Vectors

Exception ConfigK Legacy
Use
Exception
Base

StatusBEV
1 StatusEXL CauseIV EJTAG

ProbEN
Vector (IntCtlVS = 0)14

Reset,
NMI

0 0 x x x x 0xBFC0.0000

Reset,
NMI

0 1 x x x x 2’b10 || Core Local Reset Exception
Base Register bits [29:12] || 0x000

12 "||" denotes bit string concatenation.
13 'x' denotes don't care
14 || denotes bit string concatenation

84

6 Exceptions — Revision 01.20

Exception ConfigK Legacy
Use
Exception
Base

StatusBEV
1 StatusEXL CauseIV EJTAG

ProbEN
Vector (IntCtlVS = 0)14

Reset,
NMI

1 x x x x x Core Local Reset Exception Base
Register bits [31:12] || 0x000

EJTAG
Debug

0 0 x x x 0 0xBFC0.0480 (if DCR.RDVec=0)

DebugVectorAddr[31:7] || 2b0000000 (if
DCR.RDVec=1)

EJTAG
Debug

0 1 x x x 0 2’b10 || Core Local Reset Exception
Base Register bits [29:12] || 0x480 (if
DCR.RDVec = 0) DebugVectorAddr[31:7]
|| 2b0000000 (if DCR.RDVec = 1)

EJTAG
Debug

1 x x x x 0 Core Local Reset Exception Base
Register bits [31:12] || 0x480 (if
DCR.RDVec = 0) DebugVectorAddr[31:7]
|| 2b0000000 (if DCR.RDVec = 1)

EJTAG
Debug

x x x x x 1 0xFF20.0200

TLB
Refill

x x 0 0 x x EBase[31:12] || 0x000

TLB
Refill

x x 0 1 x x EBase[31:12] || 0x180

TLB
Refill

0 0 1 0 x x 0xBFC0.0200

TLB
Refill

0 1 1 0 x x 2’b10 || Core Local Reset Exception
Base Register bits [29:12] || 0x200

TLB
Refill

1 x 1 0 x x Core Local Reset Exception Base
Register bits [31:12] || 0x200

TLB
Refill

0 0 1 1 x x 0xBFC0.0380

TLB
Refill

0 1 1 1 x x 2’b10 || Core Local Reset Exception
Base Register bits [29:12] || 0x380

TLB
Refill

1 x 1 1 x x Core Local Reset Exception Base
Register bits [31:12] || 0x380

Cache
Error

0 x 0 x x x EBase[31:30] || 0b1 || EBase[28:12] ||
0x100

Cache
Error

1 x 0 x x x 0xBFC0.0100

(Config5CV = 0)

Cache
Error

1 x 0 x x x EBase[31:12] || 0x100 (Config5CV = 1)

Cache
Error

0 0 1 x x x 0xBFC0.0300

Cache
Error

0 1 1 x x x 2’b101 || Core Local Reset Exception
Base Register bits [28:12] || 0x300

Cache
Error

1 x 1 x x x Core Local Reset Exception Base
Register bits [31:12] || 0x300

Interrupt x x 0 0 0 x EBase[31:12] || 0x180
13 'x' denotes don't care
14 || denotes bit string concatenation

 85

6 Exceptions — Revision 01.20

Exception ConfigK Legacy
Use
Exception
Base

StatusBEV
1 StatusEXL CauseIV EJTAG

ProbEN
Vector (IntCtlVS = 0)14

Interrupt x x 0 0 1 x EBase[31:12] || 0x200

Interrupt 0 0 1 0 0 x 0xBFC0.0380

Interrupt 0 1 1 0 0 x 2’b10 || Core Local Reset Exception
Base Register bits [29:12] || 0x380

Interrupt 1 x 1 0 0 x Core Local Reset Exception Base
Register bits [31:12] || 0x380

Interrupt 0 0 1 0 1 x 0xBFC0.0400

Interrupt 0 1 1 0 1 x 2’b10 || SI_ExceptionBase[29:12] ||
0x400

Interrupt 1 x 1 0 1 x Core Local Reset Exception Base
Register bits [31:12] || 0x400

All
others

x x 0 x x x EBase[31:12] || 0x180

All
others

0 0 1 x x x 0xBFC0.0380

All
others

0 1 1 x x x 2’b10 || Core Local Reset Exception
Base Register bits [29:12] || 0x380

All
others

1 x 1 x x x Core Local Reset Exception Base
Register bits [31:12] || 0x380

6.4 Core-Level Exception Priorities
The following table contains a list and a brief description of all core level exception conditions. The
exceptions are listed in the order of their relative priority, from highest priority (Reset) to lowest (Load/store
bus error). When several exceptions occur simultaneously, the exception with the highest priority is taken.
The number of the exception taken is recorded in the ExcCode field of the CP0 Cause register.

Table 40: Priority of Exceptions

Cause.ExcCode Field
Encoding

Decimal Hex

Exception Description

N/A N/A Reset Assertion of SI_Reset signal. In this case the device
is reset. No specific register is written when a Reset
exception occurs.

N/A N/A DSS Debug Single Step. Prioritized above other exceptions,
including asynchronous exceptions, so that one can
single-step into interrupt (or other asynchronous)
handlers.

When a DSS exception occurs, hardware sets the CP0
Debug.DSS bit.

13 'x' denotes don't care
14 || denotes bit string concatenation

86

6 Exceptions — Revision 01.20

Cause.ExcCode Field
Encoding

Decimal Hex

Exception Description

N/A N/A DINT Debug Interrupt. Caused by the assertion of the external
DINT input, or by setting the appropriate DINT bit in the
Send to Group register, which is part of the General
Interrupt Controller (GIC) register set. Refer to the GIC
chapter of this manual for more information.

When a DINT exception occurs, hardware sets the CP0
Debug.DINT bit.

N/A N/A DDBLImpr

DDBSImpr

Debug Data Break Load/Store. Imprecise.

When this exception occurs, hardware sets the CP0
Debug.DDBLImpr bit if the error occurred during a load,
or the Debug.DDBSImpr bit if the error occurred during a
store.

N/A N/A NMI Indicates the assertion of the SI_NMI signal. When an
NMI interrupt occurs, hardware sets the CP0 Status.NMI
bit.

0 0x00 Interrupt An enabled interrupt occurred.

23 0x17 Deferred Watch A deferred watch exception, deferred because EXL was a
logic ‘1’ when the exception was detected, was asserted
after EXL went to ‘0’.

When a deferred WATCH exception occurs, hardware
sets the WP bit in the CP0 Cause register. In addition,
hardware sets the I, R, or W bits in the CP0.WatchHi
register depending on whether the exception occurred
during a fetch (I), a load (R), or a store (W).

N/A N/A DIB A Debug Instruction Breakpoint (DIB) condition was
asserted. Prioritized above instruction fetch exceptions to
allow break on illegal instruction addresses.

When a DIB exception occurs, hardware writes the DIP
bit of the CP0 Debug register.

23 0x17 WATCH - Instruction Fetch A watch address match was detected on an instruction
fetch. Prioritized above instruction fetch exceptions to
allow watch on illegal instruction addresses.

4 0x04 AdEL Instruction fetch address alignment error. A non-word-
aligned address was loaded into the PC in the current
mode.

2 0x02 TLBL/XTLBL Refill -
instruction fetch or load

TLB/XTLB refill - Instruction fetch or load. A TLB miss
occurred on an instruction fetch or a data load.

29 0x1d MPUL Fetch MPU miss. This exception is at the same priority
level as TLBL above and is only taken in an MPU is
implemented.

20 0x14 TLBXI TLB Execute Inhibit.

An instruction fetch matched a valid TLB entry which had
the XI bit set.

 87

6 Exceptions — Revision 01.20

Cause.ExcCode Field
Encoding

Decimal Hex

Exception Description

30 0x1E I-cache Error - instruction
fetch

A Cache error occurred on an instruction fetch.

6 0x6 IBE From Instruction Fetch Unit (IFU) bus error.

30 0x1E D$/L2$ Error Both of these errors are signaled as data cache errors.

7 0x07 DBE Bus error signaled on load/store (imprecise)

N/A N/A SDBBP A debug breakpoint (SDDBP instruction) was executed.
When a SDBBP exception occurs, hardware writes the
DBp bit of the CP0 Debug register.

8 0x08 Sys (Validity exception) 15 Execution of SYSCALL instruction.

9 0x09 Bp (Validity exception)15 Execution of BREAK instruction.

11 0x0B CpU (Validity exception)15 Execution of a coprocessor instruction for a coprocessor
that is not enabled. The I7200 core supports the CP0 and
CP1 coprocessors.

26 0x1A DSPDis (Execution
exception)16

DSP ASE state disabled.

10 0x0A RI (Execution exception)16 Execution of a Reserved Instruction.

15 0x0F FPE (Execution
exception)16

Floating Point exception. 17

0x11 0x0B C2E (Execution
exception)16

Coprocessor 2 unusable exception.

16 0x10 ISI (Execution exception)16 Implementation specific Coprocessor 2 exception.

12 0x0C Ov (Execution exception)16 Execution of an arithmetic instruction that overflowed.

13 0x0D Tr (Execution exception)16 Execution of a trap (when trap condition is true).

25 0x19 MT_ov (Execution
exception)16

Thread overflow condition, where a TC allocation request
cannot be satisfied.

25 0x19 MT_under (Execution
exception)16

Thread underflow condition, where the termination and
deallocation of a thread leaves no TCs activated on a
VPE.

25 0x19 MT_invalid (Execution
excep- tion)16

Invalid qualifier condition, where a YIELD instruction
specifies an invalid condition for resuming execution.

25 0x19 MT_yield_sched (Execution
exception)16

YIELD scheduler exception condition, where a valid
YIELD instruction could have caused a rescheduling of a
TC, and the YIELD intercept bit is set.

15 All of the Validity exceptions have the same priority level.
16 All of the execution exceptions have the same priority.
17 The I7200 core does not support the FPU.

88

6 Exceptions — Revision 01.20

Cause.ExcCode Field
Encoding

Decimal Hex

Exception Description

N/A N/A DDBL / DDBS Precise Debug Data Address Break. A precise debug
data break on load/store (address match only) or a data
break on store (address + data match) condition was
asserted. Prioritized above data address exceptions to
allow break on illegal data addresses.

When this exception occurs, hardware sets the CP0
Debug.DDBL bit if the error occurred during a load, or the
Debug.DDBS bit if the error occurred during a store.

23 0x17 WATCH - data access A watch address match was detected on the address
referenced by a load or store.

4 0x04 AdEL - Data Access Load address alignment error. An unaligned address, or
an address that was inaccessible in the current processor
mode was referenced by a load instruction.

5 0x05 AdES - Data Access Store address alignment error. An unaligned address, or
an address that was inaccessible in the current processor
mode was referenced by a store instruction.

2 0x02 TLBL/XTLBL refill - data
access

Load TLB miss. A TLB miss occurred on a data access.

29 0x1D MPUL Load MPU miss. This exception is at the same priority
level as the TLBL load miss above and is only taken if an
MPU is implemented.

3 0x03 TLBS Store TLB miss. Store TLB hit to page with V=0. This
exception is at the same priority level as the MPUS load
miss below and is only taken if an MMU is implemented.

29 0x1D MPUS Store MPU miss. This exception is at the same priority
level as the TLBS load miss above and is only taken if an
MPU is implemented.

19 0x13 TLBRI TLB Read Inhibit. Occurs when there is an attempt to
access a page table whose RI bit is set.

1 0x1 TLB Mod Store to TLB page with D = 0.

25 0x19 MT_GSS (Thread
exception

Gating storage scheduler exception, where a gating
storage load or store would have been blocked and
caused a rescheduling or a TC, and the GS intercept bit
is set. Note that both thread exception have the same
priority.

25 0x19 MT_GS (Thread exception) Gating storage exception condition,
where implentation-dependent logic associated with
gating or inter-thread communication (ITC) storage
requires software intervention. Note that both thread
exception have the same priority.

6.5 General Exception Processing
With the exception of Reset, NMI, cache error, and Debug exceptions, exceptions have the same basic
processing flow:

 89

6 Exceptions — Revision 01.20

• If the EXL bit in the Status register is zero, the EPC register is loaded with the PC at which execution is
restarted.

• The CE and ExcCode fields of the Cause registers are loaded with the values appropriate to the
exception. The CE field is loaded, but not defined, for any exception type other than a coprocessor
unusable exception.

• The EXL bit is set in the Status register.

• The processor begins executing at the general exception vector.

The value loaded into the EPC register represents the restart address for the exception and need not be
modified by exception handler in the normal case.

6.6 Debug Exception Processing
All debug exceptions have the same basic processing flow

• The DEPC register is loaded with the program counter (PC) value at which execution will be restarted.

• TheDSS, DBp, DDBL, DDBS, DIB, and DINT bits in the Debug register are updated appropriately,
depending on the debug exception type.

• Halt and Doze bits in the Debug register are updated appropriately.

• The DM bit in the Debug register is set to1.

• The processor is started at the debug exception vector.

The value loaded into DEPC represents the restart address for the debug exception and need not be
modified by the debug exception handler software in the usual case.

A unique debug exception is indicated through the DSS, DBp, DDBL, DDBS, DIB and DINT bits (D* bits
[5:0]) in the Debug register.

The location of the debug exception vector is determined by the ProbTrap bit in the OCI Control register
(OCR) and the RDVec bit in the Debug Control register (DCR), as shown in in the following table.

Table 41: Debug Exception Vector Address

ProbTrap bit in OCR
Register

RDVec bit in DCR
Register

Debug Exception Vector Address

0 0 0480 (offset from the Boot Exception Vector address)

0 1 DebugVectorAddr31..7 || 0000000

1 0

1 1

0xFF20 0200 in dmseg

The value in the optional drseg register DebugVectorAddr (offset 0x00020) is used as the debug exception
vector when the OCR ProbTrap bit is 0 and when enabled through the optional RDVec control bit in the
Debug Control Register (DCR).

Table 42: DebugVectorAddr Register Format

31 30 29 7 6 1 0
1 0 DebugVectorOffset 0 IM

Table 43: DebugVectorAddr Register Field Descriptions

Name Bits Description Read/Write Reset State
1 31 Ignored on write; returns one on

read.
R 1

90

6 Exceptions — Revision 01.20

Name Bits Description Read/Write Reset State
DebugVectorOffset 29:7 Programmable Debug Exception

Vector Offset.
R/W Preset to

0x7F8009

IM 0 This bit is ignored for nanoMIPS,
which does not have ISA mode.

R 0

0 30,6:1 Ignored on write; returns zero on
read.

R 0

Bits 31..30 of the DebugVectorAddr register are fixed with the value 0b10, and the addition of the base
address and the exception offset is done inhibiting a carry between bit 29 and bit 30 of the final exception
address. The combination of these two restrictions forces the final exception address to be in the kseg0
or kseg1 unmapped virtual address segments. For cache error exceptions, bit 29 is forced to a 1 in the
ultimate exception base address, so that this exception always runs in the kseg1 unmapped, uncached
virtual address segment.

6.7 Interrupt Mode Code Examples
The I7200 supports three interrupts modes: interrupt compatibilty mode, Vectored Interrupt (VI) mode, and
External Interrupt Controller (EIC) mode. The following subsections show provide examples of interrupt
handlers for each of these modes.

Interrupt Compatibility Mode
This is the default interrupt mode for the processor and is entered when a Reset exception occurs. In this
mode, interrupts are non-vectored and dispatched though exception vector offset 0x180 (if CauseIV = 0) or
vector offset 0x200 (if BEV = 0).

The following core shows a typical exception handler for compatibility mode:

/*
 * Assumptions:
 * - CauseIV = 1 (if it were zero, the interrupt exception would have to
 * be isolated from the general exception vector before arriving
 * here)
 * - GPRs k0 and k1 are available
 * - The software priority is IP7..IP0 (HW5..HW0, SW1..SW0)
 *
 * Location: Offset 0x200 from exception base
 */
IVexception:
 mfc0 k0, C0_CAUSE /* Read Cause register for IP bits */
 mfc0 k1, C0_STATUS /* and Status register for IM bits */
 andi k0, k0, M_CauseIM /* Keep only IP bits from Cause */
 and k0, k0, k1 /* and mask with IM bits */
 beq k0, zero, Dismiss /* no bits set - spurious interrupt */
 clz k0, k0 /* Find first bit set, IP7..IP0; k0 = 16..23 */
 xori k0, k0, 0x17 /* 16..23 => 7..0 */
 sll k0, k0, VS /* Shift to emulate software IntCtlVS */
 la k1, VectorBase /* Get base of 8 interrupt vectors */
 addu k0, k0, k1 /* Compute target from base and offset */
 jr k0 /* Jump to specific exception routine */
 nop
/*
 * Each interrupt processing routine processes a specific interrupt, analogous
 * to those reached in VI or EIC interrupt mode. Since each processing routine
 * is dedicated to a particular interrupt line, it has the context to know
 * which line was asserted. Each processing routine may need to look further
 * to determine the actual source of the interrupt if multiple interrupt requests
 * are ORed together on a single IP line. Once that task is performed, the
 * interrupt may be processed in one of two ways:
 *
 * - Completely at interrupt level (e.g., a simple UART interrupt). The
 * SimpleInterrupt routine below is an example of this type.
 * - By saving sufficient state and re-enabling other interrupts. In this
 * case the software model determines which interrupts are disabled during
 * the processing of this interrupt. Typically, this is either the single
 * StatusIM bit that corresponds to the interrupt being processed, or some

 91

6 Exceptions — Revision 01.20

 * collection of other StatusIM bits so that “lower” priority interrupts are
 * also disabled. The NestedInterrupt routine below is an example of this type.
 */
SimpleInterrupt:
/*
 * Process the device interrupt here and clear the interupt request
 * at the device. In order to do this, some registers may need to be
 * saved and restored. The coprocessor 0 state is such that an ERET
 * will simply return to the interrupted code.
 */
 eret /* Return to interrupted code */
NestedException:
/*
 * Nested exceptions typically require saving the EPC and Status registers,
 * saving any GPRs that may be modified by the nested exception routine, disabling
 * the appropriate IM bits in Status to prevent an interrupt loop, putting
 * the processor in kernel mode, and re-enabling interrupts. The sample code
 * below cannot cover all nuances of this processing and is intended only
 * to demonstrate the concepts.
 */
 /* Save GPRs here, and setup software context */
 mfc0 k0, C0_EPC /* Get restart address */
 sw k0, EPCSave /* Save in memory */
 mfc0 k0, C0_STATUS /* Get Status value */
 sw k0, StatusSave /* Save in memory */
 li k1, ~IMbitsToClear /* Get IM bits to clear for this interrupt */
 /* this must include at least the IM bit */
 /* for the current interrupt, and may include */
 /* others */
 and k0, k0, k1 /* Clear bits in copy of Status */
 ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)
 /* Clear KSU, ERL, EXL bits in k0 */
 mtc0 k0, C0_STATUS /* Modify mask, switch to kernel mode, */
 /* re-enable interrupts */
 /*
 * Process interrupt here, including clearing device interrupt.
 * In some environments this may be done with the core running in
 * kernel or user mode. Such an environment is well beyond the scope of
 * this example.
 */
/*
 * To complete interrupt processing, the saved values must be restored
 * and the original interrupted code restarted.
 */
 di /* Disable interrupts - may not be required */
 lw k0, StatusSave /* Get saved Status (including EXL set) */
 lw k1, EPCSave /* and EPC */
 mtc0 k0, C0_STATUS /* Restore the original value */
 mtc0 k1, C0_EPC /* and EPC */
 /* Restore GPRs and software state */
 eret /* Dismiss the interrupt */

Vectored Interrupt Mode
In Vectored Interrupt (VI) mode, a priority encoder prioritizes pending interrupts and generates a vector
which can be used to direct each interrupt to a dedicated handler routine. VI mode is in effect when all the
following conditions are true:

• Config3VInt = 1

• Config3VEIC = 0

• IntCtlVS ≠ 0

• CauseIV = 1

• StatusBEV = 0

In VI interrupt mode, the six hardware interrupts are interpreted as individual hardware interrupt requests.
The timer, performance counter, and fast debug channel interrupts are combined in a system-dependent
way (external to the CPU) with the hardware interrupts (the interrupt with which they are combined is
indicated by the IntCtlIPTI/IPCI/IPFDCI fields) to provide the appropriate relative priority of the those
interrupts with that of the hardware interrupts. The processor interrupt logic ANDs each of the CauseIP bits
with the corresponding StatusIM bits. If any of these values is 1, and if interrupts are enabled (StatusIE = 1,

92

6 Exceptions — Revision 01.20

StatusEXL = 0, and StatusERL = 0), an interrupt is signaled and a priority encoder scans the values in the
order shown in the following table.

Table 6.24 Relative Interrupt Priority for Vectored Interrupt Mode
Relative Priority Interrupt Type Interrupt Source Interrupt Request

Calculated from
Vector Number
Generated by
Priority Encoder

HW5 IP7 and IM7 7

HW4 IP6 and IM6 6

HW3 IP5 and IM5 5

HW2 IP4 and IM4 4

HW1 IP3 and IM3 3

Hardware

HW0 IP2 and IM2 2

SW1 IP1 and IM1 1

Highest Priority

Lowest Priority

Software

SW0 IP0 and IM0 0

A typical software handler for Vectored Interrupt mode bypasses the entire sequence of code following
the IVexception label shown for the compatibility mode handler code example described in the
previous subsection. Instead, the hardware performs the prioritization, dispatching directly to the interrupt
processing routine.

A nested interrupt is similar to that shown for compatibility mode. Such a routine might look as follows:

NestedException:
/*
* Nested exceptions typically require saving the EPC and Status registers,
* disabling the appropriate IM bits in Status to prevent an interrupt loop,* putting the
 processor in kernel mode, and re-enabling interrupts. The sample
* code below cannot cover all nuances of this processing and is intended only
* to demonstrate the concepts.
*/
 mfc0 k0, C0_EPC /* Get restart address */
 sw k0, EPCSave /* Save in memory */
 mfc0 k0, C0_STATUS /* Get Status value */
 sw k0, StatusSave /* Save in memory */
 li k1, ~IMbitsToClear /* Get IM bits to clear for this interrupt */
 /* this must include at least the IM bit */
 /* for the current interrupt, and may include */
 /* others */
 and k0, k0, k1 /* Clear bits in copy of Status */
 ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)
 /* Clear KSU, ERL, EXL bits in k0 */
 mtc0 k0, C0_Status /* Modify mask, switch to kernel mode, */
 /* re-enable interrupts */
/* NOTE: K0 and K1 should not be used until interrupts are disabled again */
/* Process interrupt here, including clearing device interrupt */
/*
 * To complete interrupt processing, the saved values must be restored
 * and the original interrupted code restarted.
 */
 di /* Disable interrupts - may not be required */
 lw k0, StatusSave /* Get saved Status (including EXL set) */
 lw k1, EPCSave /* and EPC */
 mtc0 k0, C0_STATUS /* Restore the original value */
 mtc0 k1, C0_EPC /* and EPC */
 ehb /* Clear hazard */
 eret /* Dismiss the interrupt */

External Interrupt Controller Mode
External Interrupt Controller (EIC) mode redefines the way that the processor interrupt logic is configured
in order to provide support for an external interrupt controller. The interrupt controller is responsible for
prioritizing all interrupts, including hardware, software, timer, fast debug channel, and performance counter
interrupts, and directly supplying to the processor the vector number of the highest priority interrupt. The

 93

6 Exceptions — Revision 01.20

priority is based on the interrupt number: a higher number indicates a higher priority. Interrupt numbers
range from 1 to 63, so the EIC can send 63 possible interrupts. A 0 in the RIPL field of the Cause register
means an interrupt is pending. A 0 in the IPL field in the status register represents no interrupts are
masked.

EIC interrupt mode is in effect if all of the following conditions are true:

• Config3VEIC = 1

• IntCtlVS ≠ 0

• CauseIV = 1

• StatusBEV = 0

The Config3 VEIC = 1 bit register indicates support for EIC mode. The state of this bit is reflected in the
EIC_MODE read-write bit of the GIC VL Control (GIC_VL_CTL) register. This bit can be written by kernel
software to enable or disable EIC mode. This is useful for systems that may want to power up in legacy
mode, then switch to EIC mode.

In EIC mode, the processor sends the state of the interrupt requests (Cause IP1..IP0) and the timer,
performance counter, and fast debug channel interrupt requests (Cause TI/PCI/FDCI) to the GIC, which
prioritizes these interrupts with other hardware interrupts.

A typical exception handler for EIC mode bypasses the entire sequence of code following the
IVexception label shown for the Compatibility-mode handler above. Instead, the hardware performs the
prioritization, dispatching directly to the interrupt processing routine.

A nested interrupt is similar to that shown for compatibility mode. It must also copy Cause RIPL to Status
IPL to prevent lower priority interrupts from interrupting the handler. Here is an example of such a routine:

NestedException:
/*
* Nested exceptions typically require saving the EPC and Status registers,
* disabling the appropriate IM bits in Status to prevent an interrupt loop,
* putting the processor in kernel mode, and re-enabling interrupts.
* The sample code below can not cover all nuances of this processing and is
* intended only to demonstrate the concepts.
*/
 mfc0 k1, C0_CAUSE /* Read Cause to get RIPL value */
 mfc0 k0, C0_EPC /* Get restart address */
 srl k1, k1, S_CauseRIPL /* Right justify RIPL field */
 sw k0, EPCSave /* Save in memory */
 mfc0 k0, C0_STATUS /* Get Status value */
 sw k0, StatusSave /* Save in memory */
 ins k0, k1, S_StatusIPL, 6 /* Set IPL to RIPL in copy of Status */
 ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)
 /* Clear KSU, ERL, EXL bits in k0 */
 mtc0 k0, C0_STATUS /* Modify IPL, switch to kernel mode, */
 /* re-enable interrupts */
 /* Process interrupt here, including clearing device interrupt */
/*
 * The interrupt completion code is identical to that shown for VI mode above.
 */

Generation of Exception Vector Offsets for Vectored Interrupts
For vectored interrupts (in either VI or EIC interrupt mode), a vector number is produced by the interrupt
control logic. This number is combined with IntCtlVS to create the interrupt offset, which is added to
0x200 to create the exception vector offset. For VI mode, the vector number is in the range 0..7, inclusive.
For EIC interrupt mode, the vector number is in the range 1..63, inclusive (0 being the encoding for “no
interrupt”). The IntCtlVS field specifies the spacing between vector locations. If this value is zero (the
default reset state), the vector spacing is zero and the processor reverts to Interrupt Compatibility mode.
A non-zero value enables vectored interrupts. The following table shows the exception vector offset for a
representative subset of the vector numbers and values of the IntCtlVS field.

94

6 Exceptions — Revision 01.20

Table 44: Exception Vector Offsets for Vectored Interrupts

Value of IntCtlVS FieldVector Number

5’b00001 5’b00010 5’b00100 5’b01000 5’b10000

0 0x0200 0x0200 0x0200 0x0200 0x0200

1 0x0220 0x0240 0x0280 0x0300 0x0400

2 0x0240 0x0280 0x0300 0x0400 0x0600

3 0x0260 0x02C0 0x0380 0x0500 0x0800

4 0x0280 0x0300 0x0400 0x0600 0x0A00

5 0x02A0 0x0340 0x0480 0x0700 0x0C00

6 0x02C0 0x0380 0x0500 0x0800 0x0E00

7 0x02E0 0x03C0 0x0580 0x0900 0x1000

•

•

•

61 0x09A0 0x1140 0x2080 0x3F00 0x7C00

62 0x09C0 0x1180 0x2100 0x4000 0x7E00

63 0x09E0 0x11C0 0x2180 0x4100 0x8000

The general equation for the exception vector offset for a vectored interrupt is:

vectorOffset ← 0x200 + (vectorNumber × (IntCtlVS || 0b00000))

 95

7 Coherence Manager — Revision 01.20

7.1 Global Control Registers (GCR)
The GCR register block contains memory mapped registers that provide:

• System information

• Settings that control the behaviour of the system

• Programmable address for the other controllers in the system such as the Cluster Power Controller
(CPC), Global interrupt Controller (GIC) and User Defined Custom region .

GCR memory-mapped registers are accessed in root mode. All registers in the Global Control Block are 32
bits wide and should only be accessed using 32-bit uncached loads and stores. Reads from unpopulated
registers in the GCR address space return 0x0, and writes to those locations are silently dropped without
generating any exceptions.

The rest of this chapter describes how to perform programming tasks using the GCRs. The code examples
use include files (cm2.h and m32c0.h) provided with MIPS Codescape SDK GNU tools. They can be
found in the include/mips directory.

GCR Base Address
The core implementer sets the GCR Base Address, which can be anywhere in the memory map that
is aligned to a 32 Kbyte boundary. The address defaults to read/write but can be forced to read only
mode by the core implementer. The CMGCR Base Register (CP0 Register 15, Select 3) is a mirror of the
GCR_BASE Register that is located within the GCR register space at offset 0x0008.

Table 45: CMGRBase Register

Register Fields

Name Bits
CMGCRBase Register

(CP0 Register 15, Select 3)

Reset State

CMGCR_BASE_ADDR 27:11 Bits 31:15 of the base physical address of the memory
mapped Coherence Manager GCR registers.

This register field reflects the value of the GCR_BASE
field within the memory-mapped Coherence Manager
GCR Base Register.

The number of implemented physical address bits
is implementation-specific. For the unimplemented
address bits - writes are ignored, returns zero on read.

Preset

The following example code reads the value of the CMGCR:

#define C0_CMGCR $15,3
#define getcmgcrg() \
({ unsigned int __value; \
__asm__ __volatile ("mfc0 %0, $%1, 0" : "=d" (__value) : "i" (C0_CMGCR)); \
__value;})
unsigned int x;
x = getcmgcrg() ;

GCR Address Blocks
The GCR address space has a total size of 32 Kbytes, which is divided into 8 Kbyte blocks as shown in the
table below. These sub-blocks are described in detail later in this chapter.

 97

7 Coherence Manager — Revision 01.20

Table 46: GCR Sub-Blocks

GCR Base Offset Description

0x0000 - 0x1FFF Global Control Block. Contains registers pertaining to the global system
functionality.

0x2000 - 0x3FFF Core-Local Control Block (aliased for each CPU core). Contains registers
pertaining to the core issuing the request. Each CPU has its own copy of
registers within this block.

0x4000 - 0x5FFF Core-Other Control Block (aliased for each CPU core). This block of
addresses gives each Core a window into another CPU’s Core-Local Control
Block. Before accessing this space, the Core-Other Addressing Register in
the Core Local Control Block must be set with the CoreNum of the target
core.

0x6000 - 0x7FFF Global Debug Block. Contains global registers useful in debugging the MPS.

For more details, refer to #unique_72/unique_72_Connect_42_table_core_other_address

7.2 Programming the GCRs
The Global Control Block is a set of memory-mapped controller registers that are used to configure and
control various aspects of the coherence scheme and Coherence Manager. This block:

• Provides information on system configuration.

• Configures address map locations of the Global Interrupt Controller, Cluster Power Controller, and the
Custom Region.

• Configures the non-coherent areas of memory to main memory or MMIO devices.

• Controls the coherency of the default shared memory region.

• Controls the handling and reporting of Coherence Manager errors.

• Controls other options of the Coherence Manager.

The Global Control Block registers are referred to as the Global Configuration Registers or GCR.

7.2.1 Finding the Number of Regions, IOCUs, and Cores in the System
The first register in the global block section is the global configuration register. This register is a read-only
register that gives you information on the configuration of your system as shown in the table below.

Table 47: Global Configuration Register

Register Fields
Name Bits

Global Configuration Register

(GCR_CONFIG Offset 0x0000)

Reset State

NUMMMIO 22:20 Total number of MMIO ports in the system. 0 - 2
MMIOs are currently supported.

IP Configuration Value

Total number of CM Address Regions. Note:
only 0, 4, 6, or Address Regions are currently
supported.

Encoding Meaning

0x0 0 Address Regions (IOCU)

NUM_ADDR_REGIONS 19:16

0x4 4 Address Regions - Standard

IP Configuration Value

98

7 Coherence Manager — Revision 01.20

Register Fields
Name Bits

Global Configuration Register

(GCR_CONFIG Offset 0x0000)

Reset State

0x6 6 Address Regions - 4 Standard plus
2 Attribute Only

0x8 8 Address Regions - 4 Standard plus
Attribute Only

NUMIOCU 11:8 Total number of IOCUs in the system. Note: 0 - 2
IOCU are currently supported.

IP Configuration Value

PCORES 7:0 Total number of cores in the system, not including
the IOCUs.

IP Configuration Value

The following example code shows how to get PCORES into register t2 and NUMIOCU into register t3.
li t0, GCR_CONFIG_ADDR
lw t1, GCR_CONFIG(t0) // Load GCR_CONFIG
ext t2, t1, PCORES_SHIFT, PCORES_BITS // Extract PCORES
ext t3, t1, NUMIOCU_SHIFT, NUMIOCU_BITS // Extract NUMIOCU.

7.2.2 Restricting Access to GCRs from Cores
The Global GCR Access Privilege Register's CM_ACCESS_EN field is used to restrict access to the GCRs
from a core. There are 6 requestors that could access the GCRs. Bits 0 – 3 correspond to cores 0 – 3. Bits
4 and 5 correspond to IOCU 0 and 1.

Table 48: Global GCR Access Privilege Register

Register Fields
Name Bits

Global GCR Access Privilege Register

(GCR_ACCESS Offset 0x0020)

Reset State

CM_ACCESS_EN 7:0 Each bit in this field represents a coherent requester. If the
bit is set, that requester is able to write to the GCR registers
(this includes all registers within the Global, Core-Local, Core-
Other, and Global Debug control blocks. The GIC is always
writable by all requestors). If the bit is clear, any write request
from that requestor to the GCR registers (Global, Core-Local,
Core-Other, or Global Debug control blocks) will be dropped.

0xff

The following example code shows how to restrict access to core 0.
li t0, GCR_CONFIG_ADDR
li t1, 1
sw t1, GCR_ACCESS(t0) // GCR_ACCESS

7.2.3 Programming Controller Base Addresses
There are 3 controllers: Global Interrupt Controller, Cluster Power Controller, and an optional Custom
controller. The base address of these controllers is programmed into GCR registers discussed in this
section. These can be placed anywhere in physical memory naturally aligned to their size.

 Programming the Global Interrupt Controller Base Address
The GIC is an optional component. To see if your system contains a GIC, read the GIC_EX field in the
Global Interrupt Controller Status Register. Because the GIC_EX field is the only field and 1 indicates that
there is a GIC, simply check whether the register value is 0.

 99

7 Coherence Manager — Revision 01.20

Table 49: GIC Status Register

Register Fields
Name Bits

GIC Status Register

(GCR_GIC_STATUS Offset 0x00D0)

Reset State

GIC_EX 0 If this bit is set, the GIC is connected to the CM. 1

The GIC base address and enable bit are located in the GIC base address register.

Table 50: GIC Base Address Register

Register Fields
Name Bits

GIC Base Address Register

(GCR_GIC_BASE Offset 0x0080)

Reset State

GIC_BASE_ADDR 31:17 This field sets the physical base address of the 128 KB
GIC.

0

GIC_EN 0 If this bit is set, the GIC address region is enabled. This
bit cannot be set to 1 if GIC_EX = 0, indicating that a GIC
is not attached to the CM.

0

The following example code performs a GIC check and sets the base address.

// Change the next line to a value you want the GIC controller to be (128 KB aligned)
#define GIC_P_BASE_ADDR 0x1bdc0000 // physical address of the GIC

li t0, GCR_CONFIG_ADDR
lw t1, GCR_GIC_STATUS(t0)
beqzc t1, no_gic // branch around set base address if 0
// set the GIC address
li t1, GIC_P_BASE_ADDR | 1 // Physical address + enable bit
sw t1, GCR_GIC_BASE (t0)
no_gic:

 Programming the Cluster Power Controller Base Address
The CPC is an optional component. To see if your system contains a CPC, read the CPC_EX field in the
GIC Status Register. Because the CPC_EX field is the only field and 1 indicates that there is a CPC, simply
check whether the register value is 0. The CPC base address and enable bit are located in the Cluster
Power Controller base address register.

Table 51: Cluster Power Controller Address Register

Register Fields
Name Bits

Cluster Power Controller Base Address Register

(GCR_CPC_BASE Offset 0x0088)

Reset State

CPC_BASE_ADDR 31:15 This field sets the base address of the 32K Cluster Power
Controller.

0

CPC_EN 0 If this bit is set, the CPC address region is enabled. This bit
cannot be set if 1 CPC_EX = 0, indicating that a CPC is not
attached to the CM.

0

The following example code performs a CPC check and sets the base address.

// Change the next line to a value you want the CPC controller to be (32 KB aligned)
#define CPC_P_BASE_ADDR 0x1bde0000 // physical address of the CPC

li t0, GCR_CONFIG_ADDR
lw t1, GCR_CPC_STATUS(t0)
beqzc t1, no_cpc // branch around set base address if 0
// set the CPC address
li t1, CPC_P_BASE_ADDR | 1 // Physical address + enable bit
sw t1, GCR_CPC_BASE(t0)
no_cpc:

100

7 Coherence Manager — Revision 01.20

 Programming the Global Custom Base Register
The CM supports an optional Custom (user-defined) GCRs. To see if your system contains Custom GCR
registers, read the GGU_EX field in the Custom Status Register. Because the GGU_EX field is the only
field and a 1 indicates that there are Custom GCR registers, simply check whether the register value is 0.
The Custom base address and enable bit are located in the Custom base register.

Table 52: GCR Custom Base Register

Register Fields
Name Bits

GCR Custom Base Register

(GCR_CUSTOM_BASE Offset 0x0060)

Reset State

GCR_CUSTOM_BASE 31:16 This field sets the base address of the 64 KB GCR
custom user-defined block of the I7200 MPS.

Undefined

GGU_EN 0 If this bit is set, the Custom GCR address region is
enabled. This bit cannot be set to 1 if GGU_EX = 0,
indicating that a custom GCR is not attached to the CM.

0

The following example code performs a custom base register check and sets the base address.

// Change the next line to a value you want the Custom Base Registers to be (64 KB aligned)
#define GGU_P_BASE_ADDR 0x1bdf0000 // physical address of the GGU

li t0, GCR_CONFIG_ADDR
lw t1, GCR_CUSTOM_STATUS (t0)
beqz t1, no_gcr // branch around set base address if 0
// set the GGU address
li t1, GGU_P_BASE_ADDR | 1 // Physical address + enable bit
sw t1, GCR_CUSTOM_BASE(t0)
no_gcr:

 Programming MMIO Address Regions
An Uncached or Uncached Accelerated (UCA) request from CPU cores can be mapped to Memeory
Mapped I/O (MMIO) using the address region registers (GCR_REG*_BASE and GCR_REG*_MASK) in the
CM GCR block. An MMIO request initiated by an I7200 CPU that targets a MMIO port is routed from the
core, to the CM, to the MMIO port. The corresponding responses are passed from the MMIO port back to
the CM and back to the requesting core. When the CM routes out the MMIO requests from the CPU cores
to a target MMIO port, CM hardware maintains the order of read and write requests for each CPU core.

If the system does not have MMIO, the request goes to the main memory, regardless of the region
configuration.

Note: The MMIO address space is expected to be accessed using an Uncached or Uncached Accelerated
(UCA) CCA. I7200 CPU requests targeting MMIO are routed through the uncached pipeline of the CM and
the CM sends those requests out on the external MMIO AXI port. The corresponding responses from the
MMIO bus are captured by the CM. The CM then routes those responses back to the requesting CPU core.

 Programming Address Regions
 Programming the Default Address Region
Requests with addresses that do not map to any of the registers blocks within CM or with the ranges in
address region registers fall into the default address region. For the default address region, the GCR base
register determines whether the cache coherency attribute default override is enabled. It also determines
the CCA if the override is enabled and the memory port (memory or MMIO) that is associated with the
default region.

 101

7 Coherence Manager — Revision 01.20

Table 53: GCR Base Register

Register Fields
Name Bits

GCR Base Register

(GCR_BASE Offset 0x0008)

Reset State

Used with CCA_DEFAULT_OVERRIDE_ENABLE
to force the CCA value for transactions on
the L2/system memory interface. Refer to the
CCA_DEFAULT_OVERRIDE_ENABLE field. This
field is only applicable for the cached pipe in dual-
pipe CM configurations

Encoding Meaning

0x0 Write through

0x2 Uncached

0x3 Write-back non-coherent

0x4 Mapped to WB

0x5 Mapped to WB

CCA_DEFAULT_
OVERRIDE_VALUE

7:5

0x7 Uncached accelerated

0

CCA_DEFAULT_
OVERRIDE_ENABLE

4 If the CCA_DEFAULT_OVERRIDE_ENABLE is
set to 1 and CM_DEFAULT_TARGET is set to
memory, transactions with addresses that do not
map to any region have a CCA value set to the
CCA_DEFAULT_OVERRIDE_VALUE when driven
to the L2 or memory. This field is only applicable
for the cached pipe in dual-pipe CM configurations.

0

Determines the target device for the default
memory region. This is only applicable for the
uncached pipe in dual-pipe CM configurations. If
there are no MMIO ports present in the system,
the target is always memory.

Encoding Meaning

0 Memory

2 First MMIO

CM_DEFAULT_TARGET 1:0

3 Second MMIO

Signal
SI_CM_DEFAULT
_TARGET

The following example code programs the default region to disable the L2 cache.
li t0, GCR_CONFIG_ADDR
lw t1, GCR_BASE(t0) // Read GCR_BASE
li t2, 0x50 // Enable CCA and set to uncached
ins t1, t2, 0, 8 // Insert bits
sw t1, GCR_BASE(t0) // Write GCR_BASE

The following example code programs the default region to enable to L2 cache.
li t0, GCR_CONFIG_ADDR
lw t1, GCR_BASE(t0) // Read GCR_BASE
ins t1, zero, 0, 8 // CCA Override disabled
sw t1, GCR_BASE(t0) // Write GCR_BASE

 Programming Variable Size Address Regions
There can be up to four programmable variable size address regions for mapping the MMIO and memory.
Like the default region, these regions can be used to override the CCA value between the L2 cache and
memory. The number of regions is determined at IP configuration time. If MMIO is not present, the regions
registers can still be used for CCA overrides to main memory. There are two registers for each address
region, a base address register and an address mask register. The following table shows the offsets from
the GCR base address for the four possible regions.

102

7 Coherence Manager — Revision 01.20

Table 54: Address Region Register Offsets

Region Base Address Register Offset Address Mask Register offset
0 0x0090 0x0098

1 0x00A0 0x00A8

2 0x00B0 0x00B8

3 0x00C0 0x00C8

The region base address register is used to program the region address. The base address is aligned to a
64 Kbyte boundary so the lower 16 bits of the address are always 0.

Table 55: Region Base Address Register

Register Fields
Name Bits

Region Base Address Register

(GCR_REGn_BASE Offsets 0x0090, 0x00A0, 0x00B0,
0x00C0)

Reset State

CM_REGION_BASE_ADDR 31:16 This field sets the base address of the Coherence
Memory Region.

0

The region address mask register is used to program the size of the region, the CCA override, and the
device (MMIO or memory).

Table 56: Region Address Mask Register

Register Fields
Name Bits

Region Address Mask Register

(GCR_REGx_MASK Offsets 0x0098, 0x00A8,
0x00B8, 0x00C8)

Reset State

CM_Region_Address_Mask 31:16 This field is used to set the size of the CM
region. The only allowed values in this register
are contiguous sets of leading 0x1s. An 0x1
preceded by a 0x0 is not allowed (e.g., the
value of 0xfff0 is allowed, but the value 0xffef is
not allowed).

Undefined

Used with CCA_OVERRIDE_ENABLE to force
the CCA value for transactions on the L2 or
system memory interface. This field is only
applicable for the cached pipe in dual-pipe CM
configurations.

Encoding Meaning

0x0 Write through

0x2 Uncached

0x3 Write-back

0x4 Mapped to WB (CWBE)

0x5 Mapped to WB (CWB)

CCA_OVERRIDE_VALUE 7:5

0x7 Uncached accelerated

0

 103

7 Coherence Manager — Revision 01.20

Register Fields
Name Bits

Region Address Mask Register

(GCR_REGx_MASK Offsets 0x0098, 0x00A8,
0x00B8, 0x00C8)

Reset State

CCA_OVERRIDE_ENABLE 4 If CCA_OVERRIDE_ENABLE is set to 1 and
CM_REGION_TARGET is set to memory,
transactions with addresses that map to
this region have a CCA value set to CCA_
OVERRIDE_VALUE when driven to the L2 or
memory. This field is only applicable for the
cached pipe in dual-pipe CM configurations.

0

Maps this region to the specified device. This
field is only applicable for the uncached pipe in
dual-pipe CM configurations.

Encoding Meaning

0 Disabled

1 memory

2 First MMIO

CM_Region_TARGET 1:0

3 Second MMIO

0

CM_Region_Address_Mask determines the size of the region. This field is used along with its equivalent
CM region base address register. The request physical address (result of a load, store or fetch) is logically
ANDed with the value of this register and ANDed with the value of the region's base address register to
see if the requested address is in range of this region. If both ANDed results match, the request is routed to
its CM_Region_TARGET.

The CCA_OVERRIDE_VALUE overrides the CCA for the L2 to memory if the CCA_OVERRIDE_ENABLE
is also set.

The CM_Region_TARGET determines the device that the request is directed to memory or MMIO.

 Programming Attribute-Only Address Regions
Attribute-only regions allow the cache coherency attributes for that region to be modified, but they cannot
be used to select between memory and MMIO as the target.

0, 2, or 4 variable size attribute-only addresses can override the CCA value driver to the L2 cache and
memory. The number of attribute-only regions is determined at IP configuration time. Each region has
two registers: the attribute-only base address register and the attribute-only address mask register. The
following table shows the offsets from the attribute-only GCR base address for the 4 possible regions.

Table 57: Attribute-Only Region Register Offsets

Region Base Address Register Offset Address Mask Register Offset
0 0x0190 0x0198

1 0x01A0 0x01A8

2 0x0220 0x0218

3 0x0220 0x0228

The Attribute-Only Region Base Address Register is used to program the base address. The base address
is aligned to a 64 Kbyte boundary so the 16 bits of the address are always 0.

104

7 Coherence Manager — Revision 01.20

Table 58: Attribute-Only Region Address Register

Register Fields
Name Bits

Attribute-Only Region Address Register

(GCR_REGn_ATTR_BASE Offsets 0x0190, 0x01A0,
0x0210, 0x0220)

Reset State

CM_REGION_BASE_ADDR 31:16 This field sets the base address of the Coherence
Memory Region.

0

The Attribute-Only Region Address Mask register is used to program the size of the region and the CCA
override.

Table 59: Attribute-Only Region Address Mask Register

Register Fields
Name Bits

Attribute-Only Region Address Mask
Register

(GCR_REGn_ATTR_MASK Offsets 0x0198,
0x1A8, 0x218, 0x228)

Reset State

CM_REGION_ADDR_MASK 31:16 This field is used to set the size of the CM
region. The only allowed values in this register
are contiguous sets of leading 0x1s. An 0x1
preceded by a 0x0 is not allowed (e.g., the
value of 0xfff0 is allowed, but the value 0xffef is
not allowed). This field is only applicable for the
cached pipe in dual-pipe CM configurations.

Undefined

Used with CCA_OVERRIDE_ENABLE to force
the CCA value for transactions on the L2 or
system memory interface.

Encoding Meaning

0x0 Write through

0x2 Uncached

0x3 Write-back

0x4 Mapped to WB (CWBE)

0x5 Mapped to WB (CWB)

CCA_OVERRIDE_VALUE 7:5

0x7 Uncached accelerated

0

CCA_OVERRIDE_ENABLE 4 If CCA_OVERRIDE_ENABLE is set to 1 and
CM_REGION_TARGET is set to memory,
transactions with addresses that map to
this region have a CCA value set to CCA_
OVERRIDE_VALUE when driven to the L2 or
memory. This field is only applicable for the
cached pipe in dual-pipe CM configurations.

0

7.2.4 CM Error Detection
If error detection is supported, the CM detects, reports, and handles several types of errors that may be
caused by errant software or hardware soft or hard errors.

Table 60: CM Error Types

CM Interrupt #
(Type)

Error Name Description

1 GC_WR_ERR GIC or GCR register write accessed through cache address
instead of an uncached address.

 105

7 Coherence Manager — Revision 01.20

CM Interrupt #
(Type)

Error Name Description

2 GC_RD_ERR GIC or GCR register read accessed through cache address
instead of an uncached address.

3 COH_WR_ERR Coherent write error caused by GIC, GCR, or MMIO areas
accessed with a coherent address (address with a CCA of 4 or
5) instead of an uncached accessed.

4 COH_RD_ERR Coherent read error caused by GIC, GCR or MMIO areas
accessed with a coherent address (address with a CCA of 4 or
5) instead of an uncached accessed.

8 MEM_WR_RESP_ERR Write response to the memory port with slave or decode error.

9 MEM_UC_WR_RESP_ERR Write response to the uncached memory port (if implemented)
with slave or decode error.

10 MMIO0_WR_RESP_ERR Write response to MMIO port 0 with slave or decode error.

11 MMIO1_WR_RESP_ERR Write response to MMIO port 1 with slave or decode error.

17 INTVN_WR_ERR Request does not require a response and:

one core responded with M

and one or more cores responded with E, or S

or One core responded with E and one

or more cores responded with S

or Multiple cores responded with data.

18 INTVN_RD_ERR Request requires a response and:

one core responded with M and one or more cores responded
with E, or S

or one core responded with E and one

or more cores responded with S

or multiple cores responded with data.

2418 L2_RD_UNCORR An uncorrectable parity/ECC error occurred during a read to an
L2 RAM.

2518 L2_WR_UNCORR An uncorrectable parity/ECC error occurred during a write to
an L2 RAM.

2618 L2_CORR A correctable parity/ECC error occurred during an access to an
L2 RAM.

The first 7 errors are invalid requests to the GCR, GIC, or MMIO: two errors for invalid intervention
responses due to inconsistent L1 cache states and 3 errors due to L2 RAM parity errors.

If these registers already have valid error information and a second error is detected, the second error type
is captured in the CM Error Multiple Register.

In addition to reporting the error an interrupt or error response or a normal response can be generated.

18 Numbers 24 – 26 are L2 cache errors. To accommodate L2 cache sizes greater than 1MB, when the index field is too small in the
CP0 CacheErr register to hold all index tags, the information is captured in the CM2 Error GCRs. The previous CP0 CacheErr
functionality is preserved for L2 cache sizes of 1MB and less.

106

7 Coherence Manager — Revision 01.20

Enabling CM Interrupts
The CM Error Mask Register can be programmed to enable a CM interrupt. Each bit in this register enables
the corresponding CM interrupt.

Table 61: CM Error Mask Register

Register Fields

Name Bits

Global CM Error Mask Register
(GCR_ERROR_MASK Offset 0x0040)

Reset State

CM_ERROR_MASK 31:0 Each bit in this field represents an error type.
If the bit is set, an interrupt is generated if an
error of that type is detected.

If the bit is set, the transaction for read errors
completes with OK response to avoid double
reporting of the error.

0x000A_002A

Enables error numbers 2, 4,
5, 17, 19 (write errors cause
interrupts; read errors provide
error response).

Determine the Cause of a CM Error
The CM Error Cause Register contains information on the CM error number, CM_ERROR_TYPE, and an
information field (CM_ERROR_INFO) that gives more precise information on the cause.

Table 62: Error Cause Register

Register Fields

Name Bits

Global CM Error Cause Register
(GCR_ERROR_CAUSE Offset 0x0048)

Reset State

CM_

ERROR_TYPE

31:27 Indicates type of error detected. When
CM_ERROR_TYPE is zero, no errors have been
detected. When CM_ERROR_TYPE is non-zero,
another error will not be reloaded until a power-on
reset or this field is written to 0.

0

CM_ERROR_INFO 26:0 Information about the error. Based on type. Undefined

Error Codes 1 - 7
If the decimal value in the CM_ERROR_TYPE field is between 1 and 15, the ERROR_INFO field in the
Global CM Error Cause register is organized as shown as follows.

Table 63: ERROR_INFO Field State for Error Types 1 - 7

Bits Meaning

26:18 Reserved

17:15 CCA

14:12 Target Region (0: MEM, 1:GCR, 2: GIC, 3: MMIO, 5: CPC)

11:7 OCP MCmd (see following table)

6:3 Source TagID

2:0 Source Port

The OCP MCmd field is further encodes as shown in the following table.

 107

7 Coherence Manager — Revision 01.20

Table 64: MCmd (Bits 11:7) Encoding for CM_ERROR_INFO

MCmd Encoding Description

0x01 Legacy Write

0x02 Legacy Read

0x08 Coherent Read Own

0x09 Coherent Read Share

0x0A Coherent Read Discard

0x0B Coherent Ready Share Always

0x0C Coherent Upgrade

0x0D Coherent Writeback

0x10 Coherent Copyback

0x11 Coherent Copyback Invalidate

0x12 Coherent Invalidate

0x13 Coherent Write Invalidate

0x14 Coherent Completion Sync

Error Codes 8 - 15
If the decimal value in the CM_ERROR_TYPE field is between 8 and 15, the ERROR_INFO field in the
Global Config register is organized as shown in the following table.

Table 65: ERROR_INFO Field State for Error Types 8 - 15

Bit Meaning

26:10 Reserved

9:8 Error type:
• 2'b01 Unexpected EXOK
• 2'b10 SLVERR
• 2'b11 DECERR

7 Address available

6:3 Source TagID

2:0 Source port

Error Codes 16 - 23
If the decimal value in the CM_ERROR_TYPE field is between 16 and 23, the ERROR_INFO field in the
Global Config register is organized as shown in the following table.

Table 66: ERROR_INFO Field State for Error Types 16 - 23

Bit Meaning

26:21 Reserved

20:19 Coherent state from core 3 (see Table 67: Coherent State Values for Error Types 16 -
23 on page 109)

18 Intervention SResp from core 3 (see Table 68: Intervention SResp Values for Error
Types 16 - 23 on page 109)

108

7 Coherence Manager — Revision 01.20

Bit Meaning

17:16 Coherent state from core 2 (see Table 67: Coherent State Values for Error Types 16 -
23 on page 109)

15 Intervention SResp from core 2 (see Table 68: Intervention SResp Values for Error
Types 16 - 23 on page 109)

14:13 Coherent state from core 1 (see Table 67: Coherent State Values for Error Types 16 -
23 on page 109)

12 Intervention SResp from core 1 (see Table 68: Intervention SResp Values for Error
Types 16 - 23 on page 109)

11:10 Coherent state from core 0 (see Table 67: Coherent State Values for Error Types 16 -
23 on page 109)

9 Intervention SResp from core 0 (see Table 68: Intervention SResp Values for Error
Types 16 - 23 on page 109)

8 Request was from a Store Conditional

7:3 OCP MCmd (see Table 64: MCmd (Bits 11:7) Encoding for CM_ERROR_INFO on page
108)

2:0 Source port

The following table shows the encoding for the coherent state errors for bits 20:19, 17:16, 14:13, and
11:10.

Table 67: Coherent State Values for Error Types 16 - 23

Encoding Meaning

0 Invalid

1 Shared

2 Modified

3 Exclusive

The following table shows the encoding for the Intervention Sresp errors for bits 18,15, 12, and 9.

Table 68: Intervention SResp Values for Error Types 16 - 23

Encoding Meaning

0 OK

1 Data (DVA)

Error Codes 24 - 26
If the decimal value in the CM_ERROR_TYPE field is between 24 and 26, the ERROR_INFO field in the
Global Config register is organized as shown in the following table.

Table 69: ERROR_INFO Field State for Error Types 24 - 26

Bit Meaning

26:24 Reserved (zero)

23 Multiple Uncorrectable

 109

7 Coherence Manager — Revision 01.20

Bit Meaning

22:18 Instruction[4:0] associated with the error see Table 70: Instructions for Error Types 24 -
26 on page 110

17:16 Array type[1:0]:

00 = None

01 = Tag RAM single/double ECC error 10 = Data RAM single/double ECC error 11 =
WS RAM uncorrectable dirty parity

15:12 DWord[3:0] with error, Array type = 2 only

11:9 Way[2:0] associated with the error

8 Multi-way error for Tag or WS RAM

7:0 Syndrome associated with Tag or WS way, or Syndrome associated with Data DWord

The instruction associated with the error is encoded into bits 22:18 of the ERROR_INFO field. The
encoding for these bits is shown in the following table.

Table 70: Instructions for Error Types 24 - 26

Bit Meaning

0x00 L2_NOP

0x01 L2_ERR_CORR

0x02 L2_TAG_INV

0x03 L2_WS_CLEAN

0x04 L2_RD_MDYFY_WR

0x05 L2_WS_MRU

0x06 L2_EVICT_LN2

0x08 L2_EVICT

0x09 L2_REFL

0x0A L2_RD

0x0B L2_WR

0x0C L2_EVICT_MRU

0x0D L2_SYNC

0x0E L2_REFL_ERR

0x10 L2_INDX_WB_INV

0x11 L2_INDX_LD_TAG

0x12 L2_INDX_ST_TAG

0x13 L2_INDX_ST_DATA

0x14 L2_INDX_ST_ECC

0x18 L2_FTCH_AND_LCK

0x19 L2_HIT_INV

0x1A L2_HIT_WB_INV

0x1B L2_HIT_WB

110

7 Coherence Manager — Revision 01.20

7.2.5 Programming Individual Core Coherency Configuration
This section describes how to program a core's local GCR configuration. Two blocks of memory mapped
registers are used to configure a core's local GCR: the Core-Local block and the Core-Other block.
• The Core-Local block is used to change the local GCR configuration for the core that is currently

executing.

• The Core-Other block is used to change the local GCR configuration for other cores in the system.

These two blocks are offset from the base address of the Global Configuration Registers.

Table 71: Core-Local And Core-Other Offset from GCR Base

GCR Base Offset Description
0x2000 - 0x3FFF Core-Local Control Block (aliased for each CPU core). Contains registers

pertaining to the core issuing the request. Each CPU has its own copy of
registers within this block.

0x4000 - 0x5FFF Core-Other Control Block (aliased for each CPU core). This block of
addresses gives each core a window into another CPU's Core-Local Control
Block. Before accessing this space, the Core-Other_Addressing Register in
the VPE Local Control Block must be set with the CORENum of the target
core.

Table 72: Core-Local and Core-Other Register Offsets

Register Offset Name Description
0x0008 Core Local Coherence Control Register Controls which coherent intervention

transactions apply to the local core.

0x0010 Core Local Config Register Indicates the number of VPEs in this core,
etc.

0x0018 Core Other Addressing Register (only in
Core-Local block)

Used to access the registers of another core.

0x0020 Core Local Reset Exception Base Register Sets the Reset Exception Base for the local
core.

0x0028 Core Local Identification Register Indicates the I7200 number of the local core.

 Programming Access to another Cores Local Registers
There is 1 register in the Core-Local block that is not present in the Core-Other block and that is the Core-
Other Addressing register. This register is used to select the core number that will be the target for reads
(loads) and writes (stores) access to the Core-Other Control block. To access another cores local registers,
write that core's number to the Core-Other Addressing Register then use the Core-Other control block
offset to access the registers.

Table 73: Core-Other Addressing Register

Register Fields
Name Bits

Core-Other Addressing Register
(GCR_CL_OTHER Offset 0x0018)

Reset State

CoreNum 31:16 CoreNum of the register set to be accessed
in the Core-Other address space.

0

The following example code selects core 1 as the target core for the Core-Other block accesses:

li t0, GCR_CONFIG_ADDR // load GCR Base address
li t1, 1 // load a 1 for Core #1
sll t1, t1, 16 // Shift Core number CoreNum field
// Write the Core Other Addressing Register

 111

7 Coherence Manager — Revision 01.20

sw t1, (CORE_LOCAL_CONTROL_BLOCK | GCR_CL_OTHER)(t0)

 Programming a Coherency Domain
The Coherence Control Register puts the local core into coherent mode and enables the local core to be
coherent with other requestors (core or IOCU) in the system.

Table 74: Core-Local Coherence Control Register

Register Fields
Name Bits

Core Local Coherence Control Register
(GCR_Cx_COHERENCE Offset 0x0008)

Reset State

Each bit in this field represents a coherent
requester within the CPS. Setting a bit within this
field enables interventions to this core from that
requester.

The requestor bit that represents the local core is
used to enable or disable coherence mode in the
local core.

Changing the coherence mode for a local core
from 0x1 to 0x0 can only be done after flushing
and invalidating all the cache lines in the core;
otherwise, the system behavior is UNDEFINED.

Encoding Meaning

Bit 0 Core 0

Bit 1 Core 1

Bit 2 Core 2

Bit 3 Core 3

Bit 4 IOCU 0

COH_DOMAIN_EN 7:0

Bit 5 IOCU 1

0x0

The following example core enables Core 0 coherency by setting bit 0 and enables coherency with cores 1
– 3 (assuming that the code is executing from core 0).

li t0, GCR_CONFIG_ADDR // load GCR Base address
li t1, 0x0f // load mask for Core 0 and Cores 1 - 3
// Write it to the Core-Local Coherence Register
sw t1, (CORE_LOCAL_CONTROL_BLOCK | GCR_CL_COHERENCE) (t0)
// Reading the Core-Local Coherence Register and issuing a sync insures write has taken effect
lw t1, (CORE_LOCAL_CONTROL_BLOCK | GCR_CL_COHERENCE) (t0)
sync

To enable coherency on another core, first write the other core's number to the Core-Other Addressing
Register. Then use CORE_OTHER_CONTROL_BLOCK instead of CORE_LOCAL_CONTROL_BLOCK in
the example code.

 Finding the number of VPEs on a Core
Sometimes it is desirable to write portable code. Instead of using a static number for VPEs software can
look it up in the Core Local Config Register. The number of VPEs for the core that is executing is in the
PVPE field.

Table 75: Core Local Config Register

Register Fields
Name Bits

Core Local Config Register

(GCR_Cx_CONFIG Offset 0x0010)

Reset State

PVPE 9:0 Encoding Meaning IP Configuration Value

112

7 Coherence Manager — Revision 01.20

Register Fields
Name Bits

Core Local Config Register

(GCR_Cx_CONFIG Offset 0x0010)

Reset State

0x0 1 VPE

0x1 2 VPEs

0x2 3 VPEs

The number of VPEs on a core for the I7200 does not vary, therefore, there is no need to read the value
from other cores.

 Finding the Local Core Number
You can find the number on which software is executing by reading the CoreNum field of the Core-Local
Identification Register.

Table 76: Core Local Identification Register

Register Fields
Name Bits

Core-Local Identification Register

(GCR_Cx_ID Offset 0x0028)

Reset State

CoreNum 31:0 This number is used as an index to the registers within the
GCR when accessing the Core-local control block for this core.

 Programming the Boot Exception Vector (BEV)
To facilitate the BEV overlay scheme, a number of pins were added to the I7200 core that allow the user
to select the boot overlay parameters at build time. In addition, the CM provides two registers in the Core-
Local address space that allow the boot exception vector for each core to be located anywhere in physical
memory.

The initial state of the default values selected by the user at build time are registered inside the Coherence
Manager (CM) block using two Core-Local Configuration Registers. There are two GCR registers used per
core. Each core has its own pair of these GCR registers and its own set of BEV related pins. This allows
each core to be programmed in a different manner and independently from one another.

7.3 CM Performance Counters

7.3.1 CM Performance Counter Functionality
Performance characteristics of the CM can be measured via the CM performance counters. Two sets of
identical programmable 32-bit performance counters in addition to a 32-bit cycle counter are implemented.
The counters are controlled and accessed via GCR registers located in the Global debug block at offset
0x6000.

The counters are started by writing a 1 to the P0_CountOn, P1_CountOn and Cycl_Cnt_CountOn bits in
the CM Performance Counter Control Register. Each counter can be reset to 0, and the corresponding
overflow bit (P0_Overflow, P1_Overflow, Cyc_Cnt_Overflow) is reset to 0 prior to the start of counting
by writing a 1 to the P0_Reset, P1_Reset and Cycl_Cnt_Reset bits in the same access that sets the
corresponding start bits. This functionality allows all three counters to be reset and started with a single
GCR write. The CM Performance Counter Control Register also controls how a counter overflow is
handled. If the Perf_Ovf_Stop bit is set to 1, then all CM Performance counters will stop when one of
the counters (including the Cycle Counter) reaches its maximum value of 0xFFFFFFFF. If instead the
Perf_Ovf_Stop bit is set to 0, when a counter overflows, it rolls over and continues counting from 0.

If the Perf_Int_En bit is set to 1, an interrupt is generated when one of the counters (including the cycle
counter) reaches its maximum value of 0xFFFFFFFF. The CM asserts the CM_PCInt signal which
generates an interrupt only if the System Integrator has connected CM_PCInt to one bit of SI_CMInt.

 113

7 Coherence Manager — Revision 01.20

When a performance counter overflows, the corresponding bit is automatically set in the CM Performance
Counter Overflow Status Register. A status bit is cleared by writing a 1 to it.

The event to be counted by each performance counter is designated by the event number set in the
Event_Sel_0 and Event_Sel_1 fields of the CM Performance Counter Event Selection Register. The events
corresponding to the event numbers are listed and described in Table 77: CM Performance Counter Event
Types on page 116. Each event is further specified by the CM Performance Counter Qualifier Register.
The meaning of the CM Performance Counter Qualifier Register is different for each event. The column
labeled “Qualifier” in Table 77: CM Performance Counter Event Types on page 116 shows the qualifiers
that can be specified for each event. For example, the qualifiers for the Request_Count event (Event
0) are the request port, CCA, Burst Length, Command, and Target. The details of the qualifiers for the
Request_Count event are defined in Table 78: CM Performance Counter Request Count Qualifier on page
117.

The qualifiers for some events are composed of several groups. A performance counter will increment
if the specified event occurs and the qualifier criteria is matched in all groups. For example, assume the
Event_Sel_0 field in the CM Performance Counter Event Selection Register is set to 0 (Request_Count).
This event occurs when the CM serializes a request. However, the performance counter for this event will
only count if the request meets the criteria programmed in all 5 groups in the Request Qualifier (see Table
78: CM Performance Counter Request Count Qualifier on page 117):

 The port that issued the request has the corresponding Request Port qualifier bit
 set to 1
AND
 The Cacheability attribute (CCA) for the request has the corresponding CCA
 qualifier bit set to 1
AND
 The Burst Length of the request (in dwords) has the corresponding qualifier bit set
 to 1
AND
 The OCP MCmd Type for the request has the corresponding Request Command qualifier
 bit set to 1
AND
 The target of the request has the corresponding Target qualifier bit set to 1

Multiple bits within a qualification group may be set. In this case, the OR of all bits set within the group.
For example, by setting the request port qualifier for Port 0 and Port 1, then a request will be counted if it
originated from Port 0 or Port 1.

A qualifier group can be set to “don’t care” by setting all bits within the group to 1. For example, to have
performance counter 0 count all requests from port 1, program the CM Performance Counter Event
Selection Register and CM Performance Counter Qualifier 0 Register as follows:

Set Event_Sel_0 to 0 (Request_Count)
Set Request Port Qualifer bit to 1 for Port 1
Set Requeset Port Qualifier bits to 0 for all other Ports
Set all other qualifer bits to 1 (causing the CCA, Burst Length, Command and Target
 to be ignored)

The two counters can be programmed to count a different event or the same event with different qualifiers.
For example, to measure the ratio of requests from Port 1 vs. all Ports, set program Counter 0 to count
requests from Port 1 (see previous example) and program Counter 1 to count all request from all Ports
by setting Event_Sel_1 to 0 (Request_Count) and set all bits in the CM Performance Counter Qualifier 1
Register to 1.

The cycle counter can be used to calculate the average rates of specified events. Continuing the
above example, assuming the cycle counter is reset, started, and stopped simultaneously with the two
performance counters, then the rate of requests from port 1 and all ports can be easily computed (value of
each performance counter / value in cycle counter).

7.3.2 CM Performance Counter Usage Models
There are several model for using the CM performance counters. This section discusses 3 possible
models:

114

7 Coherence Manager — Revision 01.20

• Periodic Sampling - take many measurement samples of specific duration

• Stop and Interrupt when counter overflows - counters run until one overflows, then interrupt CPU

• Large count capability - enables unrestricted sample periods

One model for making performance measurements is for the software to set up and gather samples for a
set period of time. The code sequence could follow the following steps:

start:
 Write CM Event and Qualifier Registers for particular event of interest
 Write CM Performance Counter Control Register to reset and start counters
 Perf_Int_En = 0 (no interrupt on overflow)
 Perf_Ovf_Stop = 0(no stop on overflow).
 P1_Reset = 1, P1_CountOn = 1
 P0_Reset = 1, P0_CountOn = 1
 Cycl_Cnt_Reset = 1, Cycl_Cnt_CountOn = 1
 Wait for some relatively small period of time (i.e., 2 seconds)
 Write CM Performance Counter Control Register to stop counters
 P1_Counton = 0, P0_CountOn=0, Cycl_Cnt_CountOn = 0
 Read CM Performance Counter 0, Counter 1, and Cycle Counter Registers
 If more events, go to start (or if measuring same counter go to step 2 instead)

A second CM performance counter usage model involves setting up the counters to stop and interrupt on
overflow. This runs the counters until one of the counters (usually the cycle counter) reaches the 32-bit
limit. An example of such a code sequence is:

start:
 Write CM Event and Qualifier Registers for particular event of interest
 Write CM Performance Counter Control Register to reset and start counters
 Perf_Int_En = 1 (interrupt on overflow)
 Perf_Ovf_Stop = 1(stop on overflow).
 P1_Reset = 1, P1_CountOn = 1
 P0_Reset = 1, P0_CountOn = 1
 Cycl_Cnt_Reset = 1, Cycl_Cnt_CountOn = 1
 When interrupt occurs:
 Read CM Performance Counter Status Register
 Read CM Performance Counter 0, Counter 1, and Cycle Counter Registers
 Write CM Performance Counter Control Register to reset counters
 (clears status register and interrupt)
 P0_Reset = 1, P1_Reset = 1, Cycl_Cnt_Reset = 1
 If more events, go to start (or if measuring same counter go to step 2 instead)

If larger counts than can fit into the 32-bit counters are required, the counters can be set up to interrupt, but
not stop, on overflow. Memory variables can then count the number of overflows, as shown below:

start:
Write CM Event and Qualifier Registers for particular event of interest
Write CM Performance Counter Control Register to reset and start counters
 Perf_Int_En = 1 (interrupt on overflow)
 Perf_Ovf_Stop = 0 (do not stop on overflow).
 P1_Reset = 1, P1_CountOn = 1
 P0_Reset = 1, P0_CountOn = 1
 Cycl_Cnt_Reset = 1, Cycl_Cnt_CountOn = 1
When interrupt occurs:
<status>=Read CM Performance Counter Status Register
Increment <overflow_count>[counter] for each counter with <status> = 1
Write <status> to CM Performance Counter Status Register to clear interrupt
When run limit is reached then :
Write CM Performance Counter Control Register to stop counters
 P1_Counton = 0, P0_CountOn=0, Cycl_Cnt_CountOn = 0
Read CM Performance Counter 0, Counter 1, and Cycle Counter Registers
Write CM Performance Counter Control Register to reset counters
 (clears status register and interrupt)
 P0_Reset = 1, P1_Reset = 1, Cycl_Cnt_Reset = 1
If more events, go to start (or if measuring same counter go to step 2 instead)

In the above model, the final counts are calculated for each counter by multiplying
<overflow_count>[counter] by 4G and adding the final values in the performance counter register.

7.3.3 CM Performance Counter Event Types and Qualifiers

 115

7 Coherence Manager — Revision 01.20

Table 77: CM Performance Counter Event Types

Event
#

Related Events Use Qualifiers Description/Comments

0 Request_Count Measuring Load Request Port Request CCA
Request Cmd Request Length
Request Target See Table 78: CM
Performance Counter Request
Count Qualifier on page 117.

Can be used in conjunction with a
cycle count to determine number
of requests received in a given
period of time.

1 Coh_Req_Resp Track coherent
requests or
responses,
and measure
sharing

Intervention State Speculation
Intervention Cmd Store
Conditional See Table 79: CM
Performance Counter Coherent
Request/Response Qualifier on
page 118.

Gives a count of the specified
coherent request and response
types.

2 L2_WR_Data_Uti L2 Write Data
Bus Usage

Accept State See Table 80: CM
Performance Counter Accept
State Qualifier on page 120.

Counts number of cycles the
L2/Memory write data bus is
occupied. The qualifier determines
if stall cycles are counted or not.

3 L2_Cmd_Util L2 Command
Bus Usage

Accept State See Table 80: CM
Performance Counter Accept
State Qualifier on page 120.

Counts number of cycles the L2/
Memory command data bus is
occupied. The qualifier determines
if stall cycles are counted or not.

4 L2_RD_Data_Util L2 Read Data
Bus Usage

None Counts number of cycles the
L2/Memory read data bus is
occupied.

5 Sharing_Miss Sharing
Frequency

Request Source Port Data
Source Port See Table 81: CM
Performance Counter CM Data
Source Qualifier on page 120.

Counts source of data for
coherent read requests
only (i.e., CohReadShare,
CohReadDiscard, CohReadOwn,
and CohReadAlways).

Useful to determine how many
cache misses were satisfied by
other processors.

6 RSU_Util RSU Usage Port to measure Response Type
See Table 82: CM Performance
Counter CM Port Response
Qualifier on page 121.

Counts number of d-words on the
processor/iocu read data bus. A
counter can only measure one
port at a time. The port number is
specified as the qualifier.

8 L2_Util L2 Pipeline
Usage

L2 Pipeline starts See Table 83:
L2 Utilization Qualifier on page
121.

Counts starts into the TA stage of
the L2 pipeline.

9 L2_Hit L2 Hit/Miss
Usage

Hit/Miss Type Source Port See
Table 84: L2 Hit Qualifier on page
121.

Counts different types of L2 Cache
Hits and Misses, crossed with
Source Port ID.

10 RD_req Measuring read
load

Request Port

Cacheability

Target

See Table 86: CM Performance
Counter Read Request and
Latency Qualifier on page 123

Gives count of matching read
requests made.

116

7 Coherence Manager — Revision 01.20

Event
#

Related Events Use Qualifiers Description/Comments

11 RD_req_latency Measuring read
latency

Request port

Cacheability

Target

See Table 86: CM Performance
Counter Read Request and
Latency Qualifier on page 123

Gives a count of total cycles all
the matching read requests had
to wait before giving responses
to CPUs or IOCUs, i.e., total read
latency. For example if 4 matching
reads had to wait for 10 cycles
each to get a response, then this
counter will contain the value 40 at
the end.

In conjunction with RD_req, the
average read latency can be
determined by RD_req_latency
count / RD_req count.

16 IOCU_Request IOCU Request CM Transaction Cnt BurstLength

L2 allocation Posted Cacheability
Request Type See Table 85: IOCU
Performance Counter Request
Count on page 122.

Counts requests receive by
the IOCU. The CM receives a
sideband signal,

SI_CMP_IOC_PerfInfo from
the IOCU as described in Table
85: IOCU Performance Counter
Request Count on page 122.

17 IOCU1_Request 2nd IOCU
Request

Transaction Cnt BurstLength L2
allocation Posted Cacheability
Request Type. See Table 85:
IOCU Performance Counter
Request Count on page 122.

Counts requests receive
by the 2nd IOCU. The CM
receives a sideband signal,
SI_CMP_IOC1_PerfInfo from the
2nd IOCU as described in Table
85: IOCU Performance Counter
Request Count on page 122.

Table 78: CM Performance Counter Request Count Qualifier

Bit Qualifier Group Qualifier Value Description/Comments
31 Port 7 Request originated from port 7

30 Port 6 Request originated from port 6

29 Port 5 Request originated from port 5

28 Port 4 Request originated from port 4

27 Port 3 Request originated from port 3

26 Port 2 Request originated from port 2

25 Port 1 Request originated from port 1

24

Request Port

Port 0 Request originated from port 0

23 WT Request had Write Through Cacheability Attribute

22 UC/UCA Request had Uncached Cacheability Attribute

21 WB Request had Cached (non-coherent) Attribute

20 CWBE Request had Coherent (Exclusive) Attribute

19

Request CCA19

CWB Request had Coherent (Shared) Attribute

19 CCA qualifier group is ignored on non-coherent cache-ops.

 117

7 Coherence Manager — Revision 01.20

Bit Qualifier Group Qualifier Value Description/Comments
18 1 dword Request was for 1 dword of data

Note: This counts the burst length as seen by the Coherent
Manager. Requests from the I/O Subsystem may be longer,
but the IOCU may break these into multiple smaller requests.

17 2 dwords Request was for 2 dwords of data See Note for 1 dword.

16

Burst Length20 (#
of dwords)

4 dwords Request was for 4 dwords of data See Note for 1 dword

15 Legacy WR Request is a legacy Write command. This is used for all
noncoherent writes. Note: When a processor is in coherent
mode, L1 cache writebacks are always considered coherent,
so they result in a cohWriteBack command, not a WR
command.

14 Legacy RD Request is a legacy Read command. This is used for all non-
coherent reads, including code fetches.

13 CohReadShare
CohReadShareAlwa

Request is a coherent read share generated by the processor
on a load that misses its L1 cache.

Currently CohReadShareAlways is unused.

12 CohReadOwn Request is a coherent read own generated by the processor
on a store that misses its L1 cache.

11 CohReadDiscard Request is a coherent read discard generated by the IOCU for
coherent requests.

10 CohUpgrade Request is a coherent upgrade request generated by the the
processor on a store that hits a shared line in its L1 cache.

9 CohWriiteBack Request is coherent writeback generated by the processor
when evicting a line from the L1 cache. The line may have
been installed in the cache from a coherent or non-coherent
transaction.

8 CohWriteInval
(Partial Line)

Request is a coherent write invalidate (not a full line of data)
generated by the IOCU.

7 CohWriteInval (Full
Line)

Request is a coherent write invalidate (full line of data)
generated by the IOCU.

6 CohInvalidate Request is an invalidate request from a processor executing a
PREF Prepare for Store or a CACHE Hit Invalidate.

5 CohCopyBack Request from a processor executing a CACHE hit writeback

4 CohCopyBackInv Request from a processor executing a CACHE hit CACHE
WriteBackInvalidate

3

Request Command

CohCompletionSync Request is from a processor executing a SYNC instruction

2 Memory Request targets memory (coherent or non-coherent)

1 GCR/GIC/CPC Request targets the Interrupt controller or Global Control
Registers

0

Target

MMIO Request targets Memory Mapped I/O space

Table 79: CM Performance Counter Coherent Request/Response Qualifier

Bit Qualifier Group Qualifier Value Description/Comments
31:25 Reserved

20 Burst Length only used when Request Command is Legacy Read, Legacy Write, CohReadDiscard or CohWriteInval.

118

7 Coherence Manager — Revision 01.20

Bit Qualifier Group Qualifier Value Description/Comments
24 Exclusive with data A processor has an exclusive copy in its L1

cache and returned data (all commands except
CohInvalidate)

23 Exclusive with no data A processor has an exclusive copy in its L1
cache but no data was returned (occurs on a
CohInvalidate)

22 Modified with data A processor has a modified copy in its L1
cache and returned data (all commands except
CohInvalidate)

21 Modified with no data A processor has a modified copy in its L1
cache but no data was returned (occurs on a
CohInvalidate)

20 Shared One or more processors have a shared copy in its
L1 cache

19

Intervention State

Invalid No processor has a copy of the data in its L1
cache

18 Speculate Requestwas a CohReadShare, CohReadOwn,
CohReadDiscard or CohReadAlways and the CM
issued a speculative read request to L2/Memory.
This qualifier group is ignored when the request is
not one of the commands listed above.

17

Speculation

No Speculate Requestwas a CohReadShare, CohReadOwn,
CohReadDiscard or CohReadAlways and the CM
did not issue a speculative read request to L2/
Memory. This qualifier group is ignored when the
request is not one of the commands listed above.

16 Reserved Currently a don’t care.

15 Reserved Currently a don’t care.

14 CohReadShare Request is a coherent read share generated by the
processor on a load that misses its L1 cache.

13 CohReadShareAlways Currently CohReadShareAlways is unused.

12

Intervention Cmd

CohReadOwn Request is a coherent read own generated by the
processor on a store that misses its L1 cache.

11 CohReadDiscard Request is a coherent read discard generated by
the IOCU for coherent requests.

10 CohUpgrade (OK
Response)

Request is a coherent upgrade request generated
by the processor on a store that hits a shared line
in its L1 cache. There is no intervening request to
the same line so an OK response is given.

9 CohUpgrade (Data
Response)

Request is a coherent upgrade request generated
by the processor on a store that hits a shared line
in its L1 cache. There is an interveningrequest to
the same line so a data response is given.

8 CohWriteBack Request is coherent writeback generated by the
processor when evicting a line from the L1 cache.
The line may have been installed in the cache from
a coherent or non-coherent transaction.

7 CohWriteInval (Partial
Line)

Request is a coherent write invalidate (not a full
line of data) generated by the IOCU.

6

Intervention Cmd (cont.)

CohWriteInval (Full
Line)

Request is a coherent write invalidate (full line of
data) generated by the IOCU.

 119

7 Coherence Manager — Revision 01.20

Bit Qualifier Group Qualifier Value Description/Comments
5 CohInvalidate Request is an invalidate request from a processor

executing a PREF Prepare for Store or a CACHE
Hit Invalidate.

4 CohCopyBack Request from a processor executing a CACHE hit
writeback

3 CohCopyBackInv Request from a processor executing a CACHE hit
CACHE WriteBackInvalidate

2 Not due to a Store
Conditional

CohUpgrade or CohReadOwn is not due to a
store conditional instruction. This qualifier group is
ignored when thecommand is not a CohUpgrade
or CohReadOwn.

1 Store Conditional that
was not Cancelled

CohUpgrade or CohReadOwn is due a store
conditional instruction and the intervention was not
cancelled.

This qualifier group is ignored when the command
is not a CohUpgrade or CohReadOwn.

0

Store Conditional
(only used when cmd
is CohUpgrade or
CohReadOwn)

Store Conditional that
was Cancelled

CohUpgrade or CohReadOwn is due a store
conditional instruction and the intervention was
cancelled due to livelock avoidance scheme. This
qualifier group is ignored when the command is
not a CohUpgrade or CohReadOwn.

Table 80: CM Performance Counter Accept State Qualifier

Bit Qualifier Group Qualifier Value Description/Comments
31:1 Reserved

0 Accept State Count_Stalls Setting this value to 0 for the L2_WR_Data_Util or
L2_Cmd_Util events cause a count of cycles when
a data word or command is accepted by the L2/
Memory.

Setting this value to 1 for L2_WR_Data_Util or
L2_Cmd_Util cause a count of cycles when a data
word or command is valid on the bus, i.e., the
count includes cycles where the command or data
bus is stalled.

Table 81: CM Performance Counter CM Data Source Qualifier

Bit Qualifier Group Qualifier Value Description/Comments

31:15 Reserved

14 7 Request originated from port 7

13 6 Request originated from port 6

12 5 Request originated from port 5

11 4 Request originated from port 4

10 3 Request originated from port 3

9 2 Request originated from port 2

8 1 Request originated from port 1

7

Request Port

0 Request originated from port 0

120

7 Coherence Manager — Revision 01.20

Bit Qualifier Group Qualifier Value Description/Comments
6 5 Data returned by processor connected to port

5

5 4 Data returned by processor connected to port
4

4 3 Data returned by processor connected to port
3

3 2 Data returned by processor connected to port
2

2 1 Data returned by processor connected to port
1

1 0 Data returned by processor connected to port
0

0

Response Port

L2/Mem Data returned by L2/Memory

Table 82: CM Performance Counter CM Port Response Qualifier

Bit Qualifier Group Qualifier Value Description/Comments
31:6 Reserved

5 Read Data Response Response was a dword of data.

4 Write Acknowledge
Response

Response was a write acknowledge (DVA
response for a write).

3

Response Type

OK Response Response was an OK response (due to a
CohUpgrade).

2:0 Port Number Port to measure Encoded value of port number to measure. For
example, a value of 2 will only count responses on
response port 2.

Table 83: L2 Utilization Qualifier

Bit Qualifier Group Qualifier Value Description/Comments
31:6 Reserved

5 L2 Pipeline start was
stalled

Any type of pipeline request start (new, replay,refill)
was refused due to a stall (ram or global stall)

4 L2 Pipeline start is taken Use to calculate L2 utilization

Any type of pipeline request start (new, replay,refill)

3 New request waiting for
Sync to clear

A new request is waiting to be dispatched to the L2
until a preceeding Sync has guaranteed ordering

2 New L2 request stalled New request to the L2 was not accepted due to a
stall (ram or global stall)

1 New L2 request denied New request to the L2 was not accepted due to
replay, refill, or a stall.

0

Pipeline Start Type

New L2 request started Use to calculate L2 bandwidth

Table 84: L2 Hit Qualifier

Bit Qualifier Group Qualifier Value Description/Comments
31:22 Reserved

 121

7 Coherence Manager — Revision 01.20

Bit Qualifier Group Qualifier Value Description/Comments
21 Partial write merged Partial write was merged into the SRT.

20

Partial Write Merge
(write misses only) Partial write not merged Partial write was not merged into the SRT.

19 Line allocated Amiss caused an allocation by the L2. This occurs
either for a full line write miss or a read miss,
depending on the L2 allocation policy.

18

Allocation (for Write
orRead

misses only)
Line not allocated A miss did not cause an allocation by the L2.

17 Other Index L2 cacheop or Fetch & Lock.

16 Non-index cache-op hit Non-index L2 cacheop hit the L2 cache.

15 Non-index cache-op
miss

Non-index L2 cacheop missed the L2 cache.

14 Write hit without RMW Write hit and update the L2 without a read modify
write operation. When the data byte enables of
all DWords are either all 0 or all 1, an L2 write
operation is performed without doing a read modify
write operation.

13 Write hit with RMW Write hit that requires a read modify write
operation. When the data byte enable of any
DWord is not all 1, a read modify write operation is
required.

12 Write miss, no memory
read

Write miss that does not require a memory read
request.

11 Write miss requiring
memory read

Write miss that does require a memory read
request.

10 Read into CRQ Read matched a pending L2 miss. Data is returned
when the pending line is refilled. It is not a Read hit
or a Read miss.

9 Read hit Read hit the L2 cache.

8

Hit/Miss Type (these are
mutially exclusive)

Read miss Read missed the L2 cache. Either allocates or
reads through to memory, depending on the L2
allocation policy.

7 7 Request originated from port 7

6 6 Request originated from port 6

5 5 Request originated from port 5

4 4 Request originated from port 4

3 3 Request originated from port 3

2 2 Request originated from port 2

1 1 Request originated from port 1

0

Source Port

0 Request originated from port 0

Table 85: IOCU Performance Counter Request Count

Bit Qualifier Group Qualifier Value Description/Comments
31 Reserved

30:27 Transaction ID TID Value of IC Tag ID to match when the All_TID
qualifier bit is set to 0. This field is unused when
All_TID is 1.

122

7 Coherence Manager — Revision 01.20

Bit Qualifier Group Qualifier Value Description/Comments
26 All_TID If 1 then the all values of IC Tag ID will match. If 0

then only transactions with IC Tag ID equal to the
TID specified above will match.

25 65-129 Request resulted in 65-129 CM transactions.

24 33-64 Request resulted in 33-64 CM transactions.

23 17-32 Request resulted in 17-32 CM transactions.

22 9-16 Request resulted in 9-16 CM transactions.

21 5-8 Request resulted in 5-8 CM transactions.

20 3-4 Request resulted in 3-4 CM transactions.

19 2 Request resulted in 2 CM transactions.

18

CM Transaction Count

1 Request resulted in 1 CM transaction.

17 129-256 IC Burst Length is 129-256 qwords.

16 65-128 IC Burst Length is 65-128 qwords.

15 33-64 IC Burst Length is 33-64 qwords.

14 17-32 IC Burst Length is 17-32 qwords.

13 9-16 IC Burst Length is 9-16 qwords.

12 5-8 IC Burst Length is 5-8 qwords.

11 3-4 IC Burst Length is 3-4 qwords.

10 2 IC Burst Length is 2 qwords.

9

Burst Length

1 IC Burst Length is 1 qword.

8 L2 Allocation Request will cause an L2 allocation.

7

L2 Allocation

No L2 Allocation Request will not cause an L2 allocation.

6 Non-posted Write Write is non-posted. Not used on reads.

5

Posted21

Posted Write Write is posted. Not used on reads.

4 Uncached Request is uncached.

3 Cached Request is Cached, non-coherent.

2

Cacheability

Coherent Request is Coherent.

1 Read Request is a read.

0

Request Type

Write Request is a write.

Table 86: CM Performance Counter Read Request and Latency Qualifier

Bit Qualifier Group Qualifier Value Description/Comments
31:30 Reserved

29 Port 5 Request originated from IOCU 1

28 Port 4 Request originated from IOCU 0

27 Port 3 Request originated from CPU 3

26 Port 2 Request originated from CPU 2

25 Port 1 Request originated from CPU 1

24

Request Port

Port 0 Request originated from CPU 0

21 This qualifier field is redundant when configured with AXI bus for IC port as writes are always non-posted with AXI bus.

 123

7 Coherence Manager — Revision 01.20

Bit Qualifier Group Qualifier Value Description/Comments
23:5 Reserved

4 Cached Requests with Cached CCA values. Ie CCA =
3,4,5

3

Cacheability

Uncached Requests with Uncached CCA values. Ie CCA =
2,7

2 Memory Cached (Coherent or non-coherent) and Uncached
requests targeting memory.

1 GCR/GIC/CPC Uncached requests targeting CM registers in GCR,
GIC and CPC.

0

Target

MMIO Uncached requests targetting MMIO ports.

 124

8 Power Mangement and the Cluster Power Controller — Revision 01.20

8 Power Mangement and the Cluster Power Controller
This chapter describes the Cluster Power Controller (CPC) included in the I7200 Multiprocessing System. The
CPC organizes bootstrap, reset, tree root clock gating, and power gating of CPUs. The CPC also manages
power cycling, reset, and clock gating of the Coherence Manager, dependent on the individual core status and
shutdown policy.

8.1 About the Cluster Power Controller
The CPC works with the power management features of the individual I7200 cores to provide a
comprehensive power management scheme. The CPC manages static leakage and dynamic power
consumption based on system-level power states assigned to the individual components of the I7200
Multiprocessing System. As such, the CPC acts as a programmable platform peripheral, which is
accessible through cluster CPU software and SOC-level hardware protocols.

The CPC is an integral part of the coherent cluster and is designed to bootstrap, reset, tree root clock-
gate and power-gate cluster CPUs and the Coherence Manager. Implementors may or may not choose to
support some or all of the physical features the CPC is architected to control. The following physical power-
management features can be selected independently:

• Power gating of selected CPUs and/or the CM: Supported by industry-standard physical design
flows, supply voltage of individual power domains can be switched on-chip. Currently, the Unified Power
Format (UPF) is provided for a seamless front to back-end design flow. Besides UPF-compliant EDA
tools, standard cell libraries are required to provide power-gating header or footer cells, as well as
isolate-high and isolate-low cells to separate unpowered domains from their active surroundings. The
CPC provides a front-end RTL simulation environment and diagnostics to verify power-gating behavior.

• Tree root clock gating: Independent of CPU internal power-management features such as register-
bank level clock gating and the sleep and doze modes, the CPC provides controls to gate clocks
directly at or after the PLL to quiesse the entire clock tree of a CPU. CPC clock-gating signals are
designed to bridge large clock insertion delays and are controlled through system-level power states.

In addition to power-management functions, the CPC also acts as reset and bootstrap controller of the
Multiprocessing System (MPS) to initialize cores as they become operational, or re-initialize them upon
system-level requests. The CPC also facilitates debug probe access to cores by detecting the connection
of a probe and enabling cores to respond to debug interrupt requests.

8.1.1 I7200 Power Domains
To power gate each core individually, the I7200 core has independently controlled power domains. RTL
simulation (as well as physical implementation of the CPS) support five distinct domains, cpu0-N and the

 125

8 Power Mangement and the Cluster Power Controller — Revision 01.20

Coherence Manager. These components are intended to be implemented with power rail switch cells to
allow shutdown.

Figure 28: I7200 Power Domains

CPC

cm2_cml2

GIC

IOCU

cm
2_

ps
o

cm2_top

Domain 4

C
lo

ck
G

en

CPU0

module_pso

ta
p

module_top

Domain 0

CPU1

module_pso

ta
p

module_top

Domain 1

CPU2

module_pso

ta
p

module_top

Domain 2

CPUN

module_pso

ta
p

module_top

Domain N

Always On Region Output Isolation Shutdown Region

Each controllable domain also is required to drive isolation values towards the system. This ensures proper
logic values from shutdown domain boundaries into powered surroundings.

The CPS top level can be implemented to belong to a voltage scaled supply domain. This enables dynamic
voltage and frequency scaling over the full CPS with shutdown features for individual subdomains.

With shutdown of all cores, the Coherence Manager becomes inactive unless IOCU traffic is requested.
The CPC provides programmable power down for these components.

8.1.2 Operating Level Transitions
To reach power-down and clock-off mode, software and hardware are required to go through a sequence of
steps on each operating level to reach the next level.

Coherent to Non-Coherent Mode Transition
To leave the coherent domain and operate independently or prepare for shutdown, follow this sequence:

1. Switch to non-coherent CCA.

2. Flush dirty data from data cache using IndexWritebackInvalidate CACHE instruction on all lines in the
cache.

3. If the instruction cache contains lines that are expected to be maintained by software as coherent
(via globalized CACHE instructions), and the CPU is not going to go through a reset sequence, the
instruction cache should be flushed using IndexInvalidate CACHE instructions.

4. Write GCR_CL_COHERENCE (Core Local GCR address 0x0008). Write 0 to all bits except bit for
"self", which should stay set to 1. This step is required so that the core can issue a coherent SYNC
(step 6) to make sure all previous interventions are complete.

5. Read GCR_CL_COHERENCE (ensures step 4 has completed).

6. Issue Coherent SYNC (intervention-only SYNC is fine).

7. Write 0 to GCR_CL_COHERENCE to completely remove core from coherence domain.

126

8 Power Mangement and the Cluster Power Controller — Revision 01.20

8. Read GCR_CL_COHERENCE to ensure step 7 is complete.

Non-Coherent to Coherent Mode Transition
An independently operating core becomes a member of a coherent cluster.

1. Caches must be initialized first (since last reset)

2. There should be no data in the caches that will later be accessed coherently. Non-coherent data is
treated as exclusive/modified, which can lead to violations of the coherence protocol if other caches
have copies of the data.

3. The GCR local coherence control register is programmed to add the core to the coherent domain.

4. Switch to coherent Cache Coherence Attribute (CCA).

5. Regular coherent programs can now start on this core.

Non-Coherent to Power Down Mode Transition
A core that is not a member of a coherent domain is powered down.

Note: When a probe is detected, the CPC will prevent power down to preserve the connectivity of the TAP
scan chain. A power-down command instead causes the core to enter clock off mode.

1. The GIC might be programmed to re-route interrupts away from this core.

2. The CPC must be programmed to enter power-down mode.

3. Core outputs are held inactive towards the CM. Completion of pending bus traffic is awaited and start
of new traffic prevented using the SI_LPReq protocol.

4. The CPC initiates the clock and power shutdown micro-sequence.

Non-Coherent to Clock Off Mode Transition
A core is disconnected from bus and stops operation. Dynamic power consumption is removed.

1. Programming a CPC ClkOff command disables the clock tree root for this core.

2. Core outputs are held inactive towards the CM. Completion of pending bus traffic is awaited and start
of new traffic prevented using the SI_LPReq protocol.

3. The GIC might be programmed to re-route interrupts for this core to others.

Clock Off to Power Down Mode Transition
Power supply is removed from a disconnected core. Dynamic and leakage power is removed.

1. The CPC must be programmed to enter power-off mode.

2. The CPC initiates the clock and power shutdown micro-sequence.

Clock Off to Non-Coherent Mode Transition
A disconnected core is reconnected to the bus and starts operation.

1. The CPC command register is programmed to bring the core back on-line. A CPC_PwrUp command
lets the core resume operation immediately, or, if a Reset command is given, go through a reset
sequence before becoming operational.

2. If the core bus was isolated due to earlier power modes, this isolation is removed.

3. The clock is applied and the core starts executing instructions.

PowerDown to Non-Coherent Mode Transition
A core is powered up and becomes operational.

 127

8 Power Mangement and the Cluster Power Controller — Revision 01.20

1. The GCR local coherence control register must be set inactive for this core. Powering up into a
coherent state with uninitialized caches may corrupt coherent data.

2. Software on another core can send a PwrUp or Reset command for this core or an SOC hardware
signal can request for the CPC to schedule a power-up sequence targeting non-coherent mode.

3. The CPC schedules a power-up sequence and the core becomes operational outside the coherent
domain. After the core becomes operational, execution continues at the boot vector provided while
power-up mode reset.

Note: Reset is not automatically applied unless the core really was in the power-down state prior to a
PwrUp command or hardware PwrUp signal.

4. The GIC might be reprogrammed to perform interrupt routing to this core.

8.2 CPC Register Programming
These sections describe some of the programming functions that can be performed via the CPC registers.

8.2.1 CPC Address Map
The CPC uses memory locations within the global, core-local, and core-others address space. The CPC
location within the CPU address map is determined by the GCR_CPC_BASE register. All address locations
in this document are relative to this base address.

In the following table, all registers are accessed using 32-bit aligned uncached load/stores. In addition, the
block offsets shown are relative to bits 31:15 of the GCR_CPC_Base register located in the CM.

Table 87: CPC Address Map (Relative to GCR_CPC_BASE[31:15])

Block Offset Size (bytes) Description
0x0000 - 0x1FFF 8 KB Global Control Block. Contains registers pertaining to the

global system functionality. This address section is visible to
all CPUs.

0x2000 - 0x3FFF 8 KB Core-Local Control Block. Aliased for each I7200 core.
Contains registers pertaining to the core issuing the request.
Each core has its own copy of registers within this block.

0x4000 - 0x5FFF 8 KB Core-Other Control Block. Aliased for each I7200 core. This
block of addresses gives each Core a window into another
core’s Local Control Block. Before accessing this space, the
Core-Other_Addressing Register in the Local Control Block
must be set to the CORENum of the target core.

Block Offsets Relative to the Base Address
The block offsets for each of the three blocks listed in Table 87: CPC Address Map (Relative to
GCR_CPC_BASE[31:15]) on page 128 are relative to a CPC base address and can be located anywhere
in physical memory. The base address is a 17-bit value that is programmed into the GCR_BASE_ADDR
field of the GCR_CPC_BASE register located at offset address 0x0088 in the Global Control Block of the
CM registers.

To determine the physical address of each block listed in Table 87: CPC Address Map (Relative to
GCR_CPC_BASE[31:15]) on page 128, the base address written to the GCR_CPC_BASE register. This
value would be added to the CPC block offset ranges to derive the absolute physical address as shown in
Table 88: Example Physical Address Calculation of the CPC Register Blocks on page 129. (An example
base address of 0x1BDE_0 is used for these calculations.)

128

8 Power Mangement and the Cluster Power Controller — Revision 01.20

Table 88: Example Physical Address Calculation of the CPC Register Blocks

Description Example
Base
Address

GCR Block Offset Absolute Physical
Address

Size (bytes)

CPC Global Control Block. 0x1BDE_0 0x0000 - 0x1FFF 0x1BDE_ 0000 -
0x1BDE_1FFF

8 KB

CPC Core-Local Control
Block.

0x1BDE_0 0x2000 - 0x3FFF 0x1BDE_ 2000 -
0x1BDE_3FFF

8 KB

CPC Core-Other Control
Block.

0x1BDE_0 0x4000 - 0x5FFF 0x1BDE_ 4000 -
0x1BDE_5FFF

8 KB

Register Offsets Relative to the Block Offsets
In addition to the block offsets, the register offsets provided in each register description of this chapter are
relative to the block offsets shown in Table 88: Example Physical Address Calculation of the CPC Register
Blocks on page 129. To determine the physical address of each register, the base address programmed
into the GCR_CPC_BASE register is added to the corresponding CPC block offset plus the actual register
offset to derive the absolute physical address as shown in in the following table. This example uses a base
address of 0x1BDE_0.

Table 89: Absolute Address of Individual CPC Global Control Block Registers

Global Control Register MIPS Default
Base

Global Register
Block Offset

Global Register
Offset

Absolute
Physical
Address

CPC Access Privilege. 0x1BDE_0 0x0000 0x0000 0x1BDE_0000

CPC Global Sequence Delay. 0x1BDE_0 0x0000 0x0008 0x1BDE_0008

CPC Rail Delay. 0x1BDE_0 0x0000 0x0010 0x1BDE_0010

CPC Reset Length. 0x1BDE_0 0x0000 0x0018 0x1BDE_0018

CPC Revision. 0x1BDE_0 0x0000 0x0020 0x1BDE_0020

The following table shows the absolute physical addresses for the CPC Core-Local block using an example
base address of 0x1BDE_0.

Table 90: Absolute Address of Individual CPC Core-Local Block Registers

Global Control Register MIPS Default
Base

Global Register
Block Offset

Global Register
Offset

Absolute
Physical
Address

CPC Core-Local Command. 0x1BDE_0 0x2000 0x0000 0x1BDE_2000

CPC Core-Local Status and
Configuration.

0x1BDE_0 0x2000 0x0008 0x1BDE_2008

CPC Core-Other Addressing. 0x1BDE_0 0x2000 0x0010 0x1BDE_2010

The following table shows the absolute physical addresses for the CPC Core-Other block using an
example base address of 0x1BDE_0.

 129

8 Power Mangement and the Cluster Power Controller — Revision 01.20

Register Offset in
Block

Name Type Description

0x010 CPC Global Rail Delay Counter Register
(CPC_RAIL_REG)

R/W Rail power-up timer to delay CPS
sequencer progress until the gated rail
has stabilized.

0x018 CPC Global Reset Width Counter
Register (CPC_RESETLEN_REG)

R/W Duration of any domain reset sequence.

0x020 CPC Global Revision Register
(CPC_REVISION_REG)

R RTL revision of CPC.

0x028

0x0F8

CPC Global RESERVED registers. - Reserved for future extensions.

Local and Core-Other Control Blocks
All registers in the CPC Local Control Block are 32 bits wide and should only be accessed using aligned
32-bit uncached load/stores. Reads from unpopulated registers in the CPC address space return 0x0, and
writes to those locations are silently dropped without generating any exceptions.

A set of these registers exists for each core in the I7200 MPS. These registers can also be accessed from
other cores by first writing the CPC Core Other Addressing Register (in the Core-Local Control Block) with
the proper CoreNum and then accessing these registers using the Core Other address space.

The register offsets shown are relative to the offsets shown in the following table.

Table 93: Core-Local Block Register Map

Register
Offset in
Block

Name Type Description

0x000 CPC Local Command Register
(CPC_CL_CMD_REG)

R/W Places a new CPC domain state command into
this individual domain sequencer.

This register is not available within the CM
sequencer. Writes to the CM CMD register are
ignored while reads will return zero.

0x008 CPC Local Status and
Configuration register
(CPC_CL_STAT_CONF_REG)

R/W Individual domain power status and domain
configuration register. Reflects domain micro-
sequencer execution. Initiates micro-sequencer
after status register programming. Reflects
command execution status.

0x010 CPC Core Other
Addressing Register
(CPC_CL_OTHER_REG)

R/W R/O
for CM

Used to access local registers of another core.

0x018

0x0F8

CPC Local RESERVED registers - Reserved for future extensions.

The register offsets shown are relative to the offsets shown in the following table.

 131

8 Power Mangement and the Cluster Power Controller — Revision 01.20

Table 94: Core-Other Block Register Map

Register
Offset in
Block

Name Type Description

0x000 CPC Local Command Register
(CPC_CO_CMD_REG)

R/W Places a new CPC domain state command into
this individual domain sequencer.

This register is not available within the CM
sequencer. Writes to the CM CMD register are
ignored while reads will return zero.

0x008 CPC Local Status and
Configuration register
(CPC_CO_STAT_CONF_REG)

R/W Individual domain power status and domain
configuration register. Reflects domain micro-
sequencer execution. Initiates micro-sequencer
after status register programming. Reflects
command execution status.

0x010 CPC Core Other
Addressing Register
(CPC_CO_OTHER_REG)

R/W R/O
for CM

Used to access local registers of another core.

0x018

0x0F8

CPC Local RESERVED registers - For Future Extensions

 132

9 Global Interrupt Controller — Revision 01.20

9 Global Interrupt Controller
This chapter describes the optional Global Interrupt Controller (GIC) included in the I7200 Multiprocessing
System. The GIC can control up to 256 external interrupt sources in multiples of 8. This chapter describes how
software controls the configuration and use of the GIC.

The optional GIC is selected at IP Configuration time. The GIC handles the distribution of interrupts between
and among the CPUs in the cluster. On a multithreaded CPU with multiple Virtual Processing Elements
(VPEs), each VPE has its own set of interrupt inputs. The GIC has the ability to route interrupts to each VPE
independently.

9.1 GIC Terminology
In the context of the GIC, the term ‘Processor’ will be used to refer to a virtual processor in the I7200 core.
The I7200 core can contain up to three VPEs per core.

The following table shows the processor numbering. If a core/VPE is not present in the system, that
processor number is reserved.

Table 95: Processor Numbering

Processor Number Core Number VPE Number
0 0 0

1 0 1

2 0 2

3 Reserved Reserved

4 1 0

5 1 1

6 1 2

7 Reserved Reserved

8 2 0

9 2 1

10 2 2

11 Reserved Reserved

12 3 0

13 3 1

14 3 2

15 Reserved Reserved

9.2 GIC Features
To provide support for a multiprocessor environment, the GIC design includes the following features:

• Accepts interrupts from up to 256 external sources.

• Supports active-high, active-low, rising-edge triggered, falling-edge triggered, and dual-edge triggered
interrupt signaling.

• Distributes/partitions the interrupt sources among the available cores and VPEs.

 133

9 Global Interrupt Controller — Revision 01.20

• Steers any interrupt source to any VPE interrupt input (Interrupt pin, NMI, yield qualifier).

• Allows any VPE to interrupt any other VPE.

• Backward compatible with pre-defined MIPS Technologies interrupt modes (legacy, vectored, and EIC).

• Scalable for both the number of interrupt sources as well as the number of VPE in the system.

• Able to integrate interrupt messages from peripherals such as PCI-Express.

• Supports multithreading, as defined in the MIPS MT-ASE and implemented by the I7200 cores,
including routing interrupts to an individual Virtual Processing Element (VPE) within a CPU core and
routing interrupts to the Yield Qualifier input pins of the CPU.

• Hardware assist features are software-configurable at run-time.

• Provides interval and watchdog timers.

9.3 GIC Address Map Overview
An I7200 Multiprocessing System can contain up to four cores and twelve VPEs. To avoid the large
address space needed for VPE-specific register sets, an aliasing address scheme is used.

The GIC address space is accessed with uncached load/store commands. The physical address and the
VPE number of the requester is supplied for each load/store command. The VPE number is used as an
index to reference the appropriate subset of the instantiated control registers. By using the VPE number
information, the hardware writes/reads the correct subset of the control registers pertaining to that VPE.
Software does not need to explicitly calculate the register index for the core in question; it is done entirely
by hardware.

In the I7200 Multiprocessing System, any VPE can access the registers of any other VPE by using the
VPE-Other address spaces. Software must write the VPE-Other Addressing Register before accessing
these address spaces. The value of this register is used by hardware to index the appropriate subset of the
control registers.

Two address windows are made available to the programmer:

• A window for the local VPE (as specified by the VPE number information).

• A second window for an other VPE that allows a VPE to access the register set belonging to another
VPE. The other VPE is specified by first writing the VPE-Other Addressing Register in the local VPE
address space.

The User-Mode Visible section is used to give quick user-mode read access to specific GIC registers. The
use of this section is meant to avoid the overhead of system calls to read GIC resources, such as counter
registers.

The following table shows the GIC address map.

Table 96: GIC Address Space

Segment Base Offset Addressing Method Address Space
Size

Virtual Address
Space Type

Shared Section
Offset

0x00000 Offset relative to GCR_GIC_Base 32 KB Kernel

VPE-Local
Section Offset

0x08000 Offset relative to GCR_GIC_Base +
using VPE number as Index

16 KB Kernel

VPE-Other
Section Offset

0x0C000 Offset relative to GCR_GIC_Base
+ using VPE-Other Addressing
Register as Index

16 KB Kernel

134

9 Global Interrupt Controller — Revision 01.20

Segment Base Offset Addressing Method Address Space
Size

Virtual Address
Space Type

User-Mode
Visible Section
Offset

0x10000 Offset relative to GCR_GIC_Base 64 KB User

As shown in the previous table, the GIC address space is divided into four types:

• Shared section: The external interrupt sources are registered, masked, and assigned to a particular
VPE and interrupt pin. This section is used by all VPEs and all cores in the system.

• VPE-Local section: Interrupts local to a VPE are registered, masked, and assigned to a particular
interrupt pin. If External Interrupt Controller Mode (EIC) mode is used for a particular VPE, the EIC
encoder is instantiated here.

• VPE-Other section: The local VPE can access the VPE-Local section of another VPE by which the
interrupt can be registered, masked, and asigned to a particular interrupt pin of the other VPE. One VPE
can setup the GIC for all VPEs in the system using this section.

• User Mode Visible section: Contains the GIC Hi/Lo counters accessible in user mode for quick user
mode access. The use of this section is meant to avoid the overhead of system calls to read GIC
resources, such as counter registers.

In the GIC, the Shared, VPE-Local, and VPE-Other sections are meant to be located in privileged system
virtual address space, in which only kernel mode software can initialize and update the interrupt controller.

A separate 64 KB address space is allocated so that it may be mapped to User Mode virtual address
space. Within this address space are aliases for GIC registers that are read so often that it makes sense
to make them available to user-mode programs without requiring a system call. The aliases for these
registers are read-only. Currently, the only registers that are aliased into this space are the shared
GIC_SH_CounterLo and GIC_SH_CounterHi registers.

GIC Base Address
The GIC base address is a 15-bit value that is programmed into the GIC_BASE_ADDR field of the GCR
GIC Base register located at offset address 0x0080 in the Global Control Block of the CM registers. Refer
to the GCR_GIC_BASE Register in Coherence Manager on page 96 for more information on this register.

Block Offsets Relative to the Base Address
The block offsets for each of the three blocks listed in Table 96: GIC Address Space on page 134
are relative to a GIC base address and can be located anywhere in physical memory. To determine the
physical address of each block listed in Table 97: Example Physical Address Calculation of the GIC
Register Blocks on page 135, the base address written to the GCR_GIC_BASE Register would be added
to the GIC block offset ranges to derive the absolute physical address as shown in the following table. Note
that an example base address of 0x1BDC_0 is used for these calculations.

Table 97: Example Physical Address Calculation of the GIC Register Blocks

Description Example Base
Address

GCR Block
Offset

Absolute
Physical
Address

Size (bytes)

GIC Shared Control Block 0x1BDC_0 + 0x0000 = 0x1BDC_ 0000 32 KB

GIC Core-Local Control Block 0x1BDC_0 + 0x8000 = 0x1BDC_ 8000 16 KB

GIC Core-Other Control Block 0x1BDC_0 + 0xC000 = 0x1BDC_ C000 16 KB

User-Mode Visible Block 0x1BDC_0 + 0x10000 = 0x1BDD_ 0000 64 KB

 135

9 Global Interrupt Controller — Revision 01.20

9.4 GIC Programming
This section covers the programming for the following tasks:

• Setting the GIC base address and enabling the GIC

• Configuration of interrupt sources

• External interrupt source configuration

• Level sensitivity, active high or active low

• Edge sensitivity, dual or single edge (falling or rising)

• Routing of interrupt external interrupts to specific processors

• Enabling or disabling interrupts

• Inter-processor interrupts

• Local device interrupt configuration

9.4.1 Setting the GIC Base Address and Enabling the GIC
As described in GIC Base Address on page 135, the base address for the memory mapped registers of
the GIC is set using the GIC_BASE_ADDR field of the GCR_GIC_BASE Register. This field is normally
programmed by the boot code. To enable the GIC the GIC_EN bit must be set in this same register.

The following example code shows how to set the GIC base address and enable the GIC at the same time.

#define GCR_CONFIG_ADDR 0xbfbf8000 // GCR registers base address (address should
 // be changed to match your I7200)
#define GCR_GIC_BASE 0x0080 // Offset of GIC Base address register from
 // GCR base address
#define GIC_P_BASE_ADDR 0x1bdc0000 // physical address of the GIC (address should
 // be changed to match your I7200)
li a1, GCR_CONFIG_ADDR + GCR_GIC_BASE // Address of the GIC address register
li a0, GIC_P_BASE_ADDR | 1 // Physical address of the GIC + enable bit
sw a0, 0(a1) // Write to GCR[GIC base address register]

9.4.2 Configuring Interrupt Sources
The triggering of interrupts is configured through several registers in the GIC that are shared by all
processors. All processors can access these registers but in practice these registers are usually
programmed at boot time by processor 0. There are three register groups that control the interrupt
triggering configuration.

• Trigger type register group

• Edge type register group

• Polarity register group

Each interrupt source is represented by one bit in each register group. Each register in a group is 32
bits so each register controls 32 interrupt sources. The first register in each group controls interrupts
0 - 31, the next 32 - 63 and so on. Since there can be 256 interrupt sources there could be 8 registers
in each group. There are enough of these registers in each group to control the number of interrupt
sources implemented. The number of interrupt sources is a fixed value configured at core build time. This
number can be determined by reading the NUMINTERRUPTS field of the "GIC Configuration Register",
GIC_SH_CONFIG.

The following example code determines the number of interrupt sources in your core:

// extracting number of interrupt slices:
#define GIC_SH_CONFIG 0x0000
#define NUMINTERRUPTS 16
#define NUMINTERRUPTS_S 8

li a1, GIC_BASE_ADDR // load virtual base address of the GIC

 137

9 Global Interrupt Controller — Revision 01.20

 // registers NOTE: must be uncached address
lw a0, GIC_SH_CONFIG(a1) // dereference GIC_SH_CONFIG
ext a0, NUMINTERRUPTS, NUMINTERRUPTS_S // NUMINTERRUPTS (actually slices - 1)

After the code executes, a0 contains how many groups of 8 plus 1 the core has. 0 indicates 1 group of 8, 1
indicates 2 groups of 8, and so on.

These three registers work in conjunction with one another to define the characteristics of each specific
interrupt in the system. Each bit of each register corresponds to an interrupt. So for a given bit, the
corresponding interrupt characteristics would be defined as shown in Table 99: Selecting Interrupt Polarity,
Edge Sensitivity, and Triggering on page 139. The ‘n’ in the table entries denotes that it can be any bit of
a given register, but must be the same bit of each register.

Trigger Type Register Group
The trigger type register group is made up of shared "Global Interrupt Trigger Type Registers",
GIC_SH_TRIG. The trigger type can be set to level or edge sensitive. Setting the source bit configures
the source to be edge sensitive and clearing it configures it to be level sensitive. For example to set the
interrupt source 32 to edge sensitive bit 0 of the second GIC_SH_TRIG Register should be set.

The following example code shows how to set interrupt source 31 to edge sensitive:

#define GIC_SH_TRIG31_0 0x0180 // offset from the GIC base address for trigger bits
 // for interrupt sources 0 - 31
li a1, GIC_BASE_ADDR // load virtual base address of the GIC registers
 // NOTE: must be uncached address
li a0, 0x80000000 // interrupt source 31 (bit 31)
sw a0, GIC_SH_TRIG31_0(a1) // (edge sensitive)

Edge Type Register Group
The edge type register group is made up of shared "Global Dual Edge Registers", GIC_SH_DUAL. This
register group is used if the Trigger type described in the last section is set to edge sensitive and has
no effect if the trigger type is level sensitive. The edge type can be either single or dual edge. Setting
the source bit configures the source to be dual edge and clearing it configures it to be single edge. For
example, to set interrupt source 32 to dual edge sensitive bit 0 of the second Global Dual Edge Registers
should be set.

The following example code shows how to program interrupt source 31 to be dual edge sensitive:

#define GIC_SH_DUAL31_0 0x0200 // offset from the GIC base address for dual bits for
 // interrupt sources 0 - 31
li a1, GIC_BASE_ADDR // load virtual base address of the GIC registers
 // NOTE: must be uncached address
li a0, 0x80000000 // interrupt source 31 (bit 31)
sw a0, GIC_SH_DUAL31_0(a1) // Dual

Polarity Type Register Group
The polarity register group is made up of shared "Global Interrupt Polarity Registers", GIC_SH_POL. This
register group is used to determine the polarity sensitivity of the source.

• If the interrupt source type is level sensitive then setting the source bit configures the source to be
active High, and clearing it configures it to be active low.

• If the interrupt is single edge sensitive then setting the source bit configures the source to rising edge
toggle and setting clearing it configure it to be falling edge toggle.

This register group has no effect if the edge type was set to dual edge sensitive.

The following example code shows how to program interrupt source 31 for high/raise polarity:

#define GIC_SH_POL31_0 0x0100 // offset from the GIC base address for polarity bits
 // for interrupt sources 0 - 31
li a1, GIC_BASE_ADDR // load virtual base address of the GIC registers
 // NOTE: must be uncached address
li a0, 0x80000000 // interrupt source 31 (bit 31)
sw a0, GIC_SH_POL31_0(a1) // (high/rise for 31)

138

9 Global Interrupt Controller — Revision 01.20

Table 99: Selecting Interrupt Polarity, Edge Sensitivity, and Triggering

Polarity
(GIC_SH_POL[n])

Trigger
(GIC_SH_TRIG[n])

Single/Dual Edge
(GIC_SH_DUAL[n])

Description

0 0 x Interrupt is level sensitive and active low. In
this case the contents of the GIC_SH_DUAL
have no meaning because level triggering is
enabled.

1 0 x Interrupt is level sensitive and active high. In
this case the contents of the GIC_SH_DUAL
have no meaning because level triggering is
enabled.

0 1 0 Interrupt is single edge triggered on the falling
edge of the signal.

1 1 0 Interrupt is single edge triggered on the rising
edge of the signal.

x 1 1 Interrupt is dual edge triggered. In this case
the contents of the GIC_SH_POL have no
meaning because inter- rupts occur on both
the rising and falling edges of the signal.

9.4.3 Interrupt Routing
The routing of interrupts to a specific input on a specific processor is controlled by the setting of 2 registers.
• Global Interrupt Map to Processor register, GIC_SH_MAP_VPE—Maps the interrupt to a VPE.

• Global Interrupt Map to Pin Register, GIC_SH_MAP_PIN—Maps interrupt to a specific signal on a VPE.

There is one of each of these 32 bit registers for each external interrupt source. The mapping of external
interrupt pins and the registers that control them is listed in the following table.

Table 100: External Interrupt Mapping

External
Interrupt

Offset Register Name External
Interrupt

Offset Register Name

0x2000 GIC_SH_MAP0_VPE 0x3F00 GIC_SH_MAP248_VPE0

0x0500 GIC_SH_MAP0_PIN

248

0x08E0 GIC_SH_MAP248_PIN

0x2020 GIC_SH_MAP1_VPE 0x3F20 GIC_SH_MAP249_VPE1

0x0504 GIC_SH_MAP1_PIN

249

0x08E4 GIC_SH_MAP249_PIN

0x2040 GIC_SH_MAP2_VPE 0x3F40 GIC_SH_MAP250_VPE2

0x0508 GIC_SH_MAP2_PIN

250

0x08E8 GIC_SH_MAP250_PIN

0x2060 GIC_SH_MAP3_VPE 0x3F60 GIC_SH_MAP251_VPE3

0x050C GIC_SH_MAP3_PIN

251

0x08EC GIC_SH_MAP251_PIN

0x2080 GIC_SH_MAP4_VPE 0x3F80 GIC_SH_MAP252_VPE4

0x0510 GIC_SH_MAP4_PIN

252

0x08F0 GIC_SH_MAP252_PIN

0x20A0 GIC_SH_MAP5_VPE 0x3FA0 GIC_SH_MAP253_VPE5

0x0514 GIC_SH_MAP5_PIN

253

0x08F4 GIC_SH_MAP253_PIN

0x20C0 GIC_SH_MAP6_VPE 0x3FC0 GIC_SH_MAP254_VPE6

0x0518 GIC_SH_MAP6_PIN

254

0x08F8 GIC_SH_MAP254_PIN

7 0x20E0 GIC_SH_MAP7_VPE 255 0x3FE0 GIC_SH_MAP255_VPE

 139

9 Global Interrupt Controller — Revision 01.20

External
Interrupt

Offset Register Name External
Interrupt

Offset Register Name

0x051C GIC_SH_MAP7_PIN 0x08FC GIC_SH_MAP255_PIN

0x2100
-

0x3EE0

GIC_SH_MAP8_VPE -
GIC_SH_MAP247_VPE

8 - 247

0x0520
-

0x08DC

GIC_SH_MAP8_PIN -
GIC_SH_MAP247_PIN

Mapping an Interrupt Source to a VPE
There is one shared Global Interrupt Map to VPE Register, GIC_SH_MAP_VPE for each interrupt source
that maps that source to a processor. Bit 0 would map the interrupt source to processor 0; bit 1 would map
the interrupt to processor 1 and so on. Setting any bit in this register causes the interrupt source to be
routed to the corresponding processor. For all GIC_SH_MAPi_VP registers, only one bit may be set at a
time. That is, an interrupt source will be routed to one and only one VPE.

The following example code maps interrupt source 31 to processor 0, which is core 0 VPE 0 as shown in
Table 95: Processor Numbering on page 133:

#define GIC_SH_MAP0_VPE31_0 0x2000 // register offset from GIC base
#define GIC_SH_MAP_SPACER 0x20 // space between registers
li a1, GIC_BASE_ADDR
a0, 1 // set bit 0 for CORE0 or for MT vpe0
sw a0, GIC_SH_MAP0_VPE31_0 + (GIC_SH_MAP_SPACER * 31) (a1) // source 31 to VPE 0

Mapping and Interrupt Source to a Specific VPE Pin
There is one shared "Global Interrupt Map to Pin Register", GIC_SH_MAP_PIN for each external interrupt
source that further maps that source to a specific signal on the VPE. There are two bits that control the
type of signals that can be assigned to the interrupt source.

• If set, the MAP_TO_PIN bit will map the external interrupt source to Interrupt Pending bits in the CP0
Cause register of the local processor. The actual Interrupt Pending value is set in the MAP field of this
register.

• Note that in EIC mode, the MAP Field of this register contains the encoded value of the number (0 -63).
For example, a value of 0x20 asserts Interrupt 32 (decimal). For vectored interrupt mode, only values of
0x0 through 0x5 should be used.

• If set, the MAP_TO_NMI bit will map the external interrupt source to the NMI bit in the CP0 Status
register. This in essence will cause the processor to soft boot using the boot exception vector as the
start of the interrupt routine.

• MAP_TO_YQ bit determines that the source is a Yield Qualifier. The actual Yield Qualifier setting is set
in the MAP field of the register.

Mapping an Interrupt Source to a Register Set
Each processor has one register per interrupt source used when the processor is in EIC mode to map the
interrupt source to a register set. This is the EIC Shadow Set Register, GIC_VPEi_EICSS, located in the
GIC local and other sections.

The first register corresponds to interrupt source 0; the second to interrupt source 1 and so on. The
EIC_SS field is set to the register set number.

140

9 Global Interrupt Controller — Revision 01.20

9.4.4 Enabling, Disabling, and Polling Interrupts
The Enabling, Disabling and Polling of interrupts is configured through several registers in the GIC that are
shared by all processors.

There are four shared registers groups for Enabling, Disabling and Polling of interrupts:

• Enabling an interrupt using the GIC Set Mask Registers, GIC_SH_SMASK

• Disabling an interrupt using the GIC Reset Mask Registers, GIC_SH_RMASK

• Determining the Enable/Disable state of an interrupt state using GIC Mask Register, GIC_SH_MASK

• Polling the interrupt active state using the GIC Pending Register, GIC_PEND_MASK

Like the trigger registers, each interrupt source is represented by one bit in each register group. Each
register in a group is 32 bits so each controls 32 interrupt sources. The first register in each group would
control interrupts sources 0 - 31, the next 32 - 63 and so on. Since there can be 256 interrupt sources
there could be 8 registers in each group. There are enough of these registers in each group to control the
number of interrupt sources implemented. The number of interrupt sources is a fixed value configured
at core build time. This number can be determined by reading the NUMINTERRUPTS field of the GIC
Configuration Register, GIC_SH_CONFIG.

Refer to Configuring Interrupt Sources on page 137 for an example that shows how to read the
NUMINTERRUPTS field.

Enabling External Interrupts
The GIC Set Mask register group is used to enable external interrupts. It is made up of GIC Set Mask
Registers, GIC_SH_SMASK. For synchronization purposes this is a write only register. Setting the source
bit enables the interrupt.

The following example code shows the enabling of interrupts 24 through 31:

li a0, 0xff000000
sw a0, GIC_SH_SMASK31_00(a1) // (enable 24..31)

Disabling External Interrupts
The GIC Reset Mask register group is used to disable external interrupts. It is made up of GIC Reset Mask
Registers, GIC_SH_RMASK. For synchronization purposes; this is a write only register. Setting the source
bit disables the interrupt.

The following example code disables interrupts sources for interrupts 24 through 31:

li a0, 0xff000000
sw a0, GIC_SH_RMASK31_0(a1) // (disable 24..31)

Determining the Enabled or Disabled Interrupt State
The GIC Mask register group is used to determine if an external interrupt is enabled. It is made up of GIC
Mask Registers, GIC_SH_MASK. For synchronization purposes; this is a read only register. If a bit is set
the corresponding interrupt source is enable. If it is clear the corresponding interrupt is disabled.

Polling for an Active Interrupt
The GIC Pending register group is used to determine if a external interrupt is active. It is made up of
GIC Pending Registers, GIC_PEND_MASK. This is a read only register. If a bit is set the corresponding
interrupt source is active. If it is clear the corresponding interrupt is inactive.

9.4.5 Inter-processor Interrupts
Each processor in the system can interrupt any other processor.

Each inter-processor interrupt is configured just like an external interrupt using sources not being used by
external devices. The interrupt source must be configured to be edge sensitive.

 141

9 Global Interrupt Controller — Revision 01.20

The Global Interrupt Write Edge Register, GIC_SH_WEDGE, is a shared register used to deliver an
interrupt to another processor (only one per system). It is also used to clear an interrupt. There are two
fields in the GIC_SH_WEDGE register used to do this.

• The RW bit determines if the interrupt is being set (delivered) or cleared. Setting this bit delivers an
interrupt and clearing the bit clears the interrupt.

• The Interrupt field should be set to the interrupt number to be set or cleared.

Setting a bit in the Write Edge register is treated equivalently to having the edge detection logic see an
active edge. Because the programming of the Write Edge register has a direct effect on the state of the
internal Edge Detect register, the Write Edge register can be used to bypass the edge detection logic.
Thus, it does not matter whether the corresponding interrupt is configured to be rising, falling, or dual edge
sensitive.

When VPE 0 wants to interrupt VPE 1, the number of the interrupt to be used is programmed into the
GIC_SH_WEDGE31_0 register. The selected interrupt must be mapped to the target VPE (VPE1 in this
example) using the GIC_SH_MAPi_VPE register).

For example, assume VPE 0 wants to toggle interrupt 40. In this case, software writes a value of 0x28
into the GIC_SH_WEDGE31_0 register. Hardware then writes the value in the WEDGE register into the
Edge Detect hardware register, effectively bypassing the edge detection logic. Hardware determines that
interrupt being toggled belongs to VPE 1, not VPE 0. The GIC routing logic then routes interrupt 40 onto
the appropriate VPE 1 interrupt pins.

The following C code example that delivers a interprocessor interrupt to any given VPE:

#define GIC_SH_WEDGE_ADDR *((volatile unsigned int*) (0x1bdc0280))
// offset 0x280 of the GIC address
//
// set_ipi(): Send an inter-processor interrupt to the specified cpu.
//
void set_ipi(int VPE_num) {
 GIC_SH_WEDGE_ADDR = 0x80000000 + FIRST_IPI + VPE_num ; // Use external interrupts 32..39 for
 ipi
}

Inter-Processor Interrupt Code Example
The following example shows how to set up interrupt sources 32 through 39 for inter-processor interrupts.
The following table shows the #define settings.

Setting Interrupt Sources 32 Through 39
#define Value Description

GIC_BASE_ADDR 0xbbdc0000 Virtual Base memory address of the GIC memory
mapped registers

GIC_P_BASE_ADDR 0x1bdc0000 Physical Base address of the GIC memory mapped
registers

GIC_SH_RMASK63_32 0x0304 Offset into the GIC registers for the GIC Reset Mask
Register

GIC_SH_POL63_32 0x0104 Offset into the GIC registers for the GIC Reset Polarity
Register

GIC_SH_TRIG63_32 0x0184 Offset into the GIC registers for the GIC Trigger Register

GIC_SH_SMASK63_32 0x0384 Offset into the GIC registers for the GIC Set Mask
Register

GCR_CONFIG_ADDR 0xbfbf8000 Virtual base memory address of the Global Configuration
Register

GCR_GIC_BASE 0x0080 Offset int the GCR of the GIC base Address

142

9 Global Interrupt Controller — Revision 01.20

#define Value Description

GIC_SH_MAP0_VPE31_0 0x2000 Offset into the GIC for first map register

GIC_SH_MAP_SPACER 0x20 Spacing between map registers

// First load GIC base address into the GCR and enable the GIC
li a1, GCR_CONFIG_ADDR + GCR_GIC_BASE // load the address of the GIC Base Address register
li a0, (GIC_P_BASE_ADDR | 1) // Physical address + enable
sw a0, 0(a1) // Store the Physical address of the GIC and the enable
 // bit to the GCR

// Configure the source pins for inter-processor interrupts
li a1, GIC_BASE_ADDR // load GIC base address
li a0, 0xff // load bits for interrupts 32..39 lower 8 bits of 2nd group)
sw a0, GIC_SH_RMASK63_32(a1) // (disable interrupts 32..39)
sw a0, GIC_SH_TRIG63_32(a1) // (set source to be edge sensitive for interrupts 32..39)
sw a0, GIC_SH_POL63_32(a1) // (set Polarity to rising edge for interrupts32..39)
sw a0, GIC_SH_SMASK63_32(a1)// (enable interrupts 32..39)

// Map interrupts to a processor

// The register offset into the GIC for the MAP TO VPE register is obtained by multiplying the
// interrupt number by the spacing size (GIC_SH_MAP_SPACER) and adding the offset for the Global
// Interrupt Map to VPE Registers (GIC_SH_MAP0_VPE31_0).

li a0, 1 // set bit 0 processor 0

// Map Source 32 processor 0
sw a0,GIC_SH_MAP0_VPE31_0+(GIC_SH_MAP_SPACER * 32)(a1)
sll a0, a0, 1 // set bit 1 for processor 1

// Source 33 to processor 1
sw a0,GIC_SH_MAP0_VPE31_0+(GIC_SH_MAP_SPACER * 33)(a1)
sll a0, a0, 1 // set bit 2 for processor 2

// Source 34 to processor 2
sw a0,GIC_SH_MAP0_VPE31_0+(GIC_SH_MAP_SPACER * 34)(a1)
sll a0, a0, 1 // set bit 3 for processor 3 or for MT vpe3

// Source 35 to processor 3
sw a0,GIC_SH_MAP0_VPE31_0+(GIC_SH_MAP_SPACER * 35)(a1)
sll a0, a0, 1 // set bit 4 for processor 4

// Source 36 to processor 4
sw a0,GIC_SH_MAP0_VPE31_0+(GIC_SH_MAP_SPACER * 36)(a1)
sll a0, a0, 1 // set bit 5 for processor 5

// Source 37 to processor 5
sw a0,GIC_SH_MAP0_VPE31_0+(GIC_SH_MAP_SPACER * 37)(a1)
sll a0, a0, 1 // set bit 6 for processor 6

// Source 38 to processor 6
sw a0,GIC_SH_MAP0_VPE31_0+(GIC_SH_MAP_SPACER * 38)(a1)
sll a0, a0, 1 // set bit 7 for processor 7

// Source 39 to processor 7
sw a0,GIC_SH_MAP0_VPE31_0+(GIC_SH_MAP_SPACER * 39)(a1)

At this point the Map-to-Pin Registers could be used to map each interrupt source to Interrupt Pending
bits in the CP0 Cause register of a processor. The default values for the Map to Pin registers are the
MAP_TO_PIN bit is set and the MAP field is cleared. This example does not change the default values
therefore the interrupts are mapped to IP2, Hardware Interrupt 0.

Example of Sending an Inter-Processor Interrupt
The following is a C coding example of sending an inter-processor interrupt.

#define Value Description

GIC_SH_WEDGE *((volatile unsigned int*)
(0x1bdc0280))

Address of the
GIC_WEDGE_REGISTER.

FIRST_IPI 32 Source number for the first IPI.

 143

9 Global Interrupt Controller — Revision 01.20

void set_ipi(int cpu_num) {
 // Add the enable bit, the first IPI number and the cpu number
 // and write it to the GIC_SH_WEDGE register
 GIC_SH_WEDGE = 0x80000000 + FIRST_IPI + cpu_num ;

Example of Clearing an Inter-Processor Interrupt
Once received, the interrupt routine should do whatever action is intended for the interrupt and clear
the interrupt by writing the interrupt number to the GIC_SH_WEDGE register before executing the eret
instruction.

Note: Only the interrupt number is set before the write so the R/W bit will be cleared indicating that the
interrupt is to be cleared.

li k0, (GIC_SH_WEDGE | GIC_BASE_ADDR)
mfc0 k1, C0_EBASE // Get cp0 EBase
ext k1, k1, 0, 10 // Extract System VPE Number
addiu k1, 0x20 // Offset to base of IPI interrupts
sw k1, 0(k0) // Clear this IPI.

9.4.6 Local Device Interrupt Configuration
The GIC also controls how devices within the processor and the GIC are configured and mapped locally to
the processor.

There are 2 devices that are added as part of the GIC described in this section:

• GIC Interval Timer: A 64 bit timer that compares a local compare registers, GIC_VPE_CompareLo/Hi
of a processor with a global counter, GIC_SH_CounterLo/Hi in the GIC and activates an interrupt when
they match.

• GIC Watchdog Timer: A 32 bit decrementing counter, GIC_VPE_WD_COUNT that can be used as
liveliness signal for a processor.

GIC Interval Timer
The interval timer is similar to the CP0 Count/Compare timer within each processor. The difference is the
GIC CounterLo/Hi register is global to the CPS so all processors will have the same time reference.

Both the interval count and interval compare values are 8 bytes wide and are made up of 2 (Lo/HI)
registers. For each Lo register overflow the Hi register is incremented. If the Hi register overflows, both
registers rollover to 0.

Counter Registers
The counter registers, GIC_SH_CounterLo/Hi are in the shared section of the GIC memory map.
The counter must be stopped before it is set. This is done by setting the COUNTSTOP bit of the
GIC_SH_CONFIG register. In practical use the counter is usually set by an OS at boot time by one
processor. These counter registers are also available (read only) in user mode located at offset 0 of the
User Mode Visible Section of the GIC.

The COUNTBITS field of the GIC_SH_CONFIG register is used to set up the width of the
GIC_SH_CounterHi register. In the GIC design, this field is fixed at a value of 0x8, indicating a total counter
size of 64-bits.

The shared counter registers are defined as follows:

• GIC_SH_CounterLo register is used with the GIC_SH_CounterHi register. Sets the lower 32-bits of the
starting count value.

• GIC_SH_CounterHi register is used with the GIC_SH_CounterLo register. Sets the upper 32-bits of the
starting count value.

Compare Registers
The compare registers, GIC_VPE_CompareLo/Hi are located in the local section of the GIC memory
map making the count specific to each processor. These registers can be written at any time. When the

144

9 Global Interrupt Controller — Revision 01.20

count value equals the compare value an Interval Timer interrupt is asserted. The interrupt is cleared (de-
asserted) by writing to either GIC_VPE_CompareLo/Hi register. The compare registers are defined as
follows:

• GIC_VPEi_CompareLo register is used with the GIC_VPEi_CompareHi register to set the count value
at which an internal interrupt is generated.

• GIC_VPEi_CompareHi register is used with the GIC_VPi_CompareLo register to set the count value at
which an internal interrupt is generated.

Determining the Counter Width
The counter used for GIC internal interrupt generation has a minimum width of 32 bits, meaning that all of
the GIC_SH_CounterLo register is used. In the GIC design, the width of the GIC_SH_CounterHi register is
also fixed at 32 bits as indicated by a value of 0x8 in the 4-bit COUNTBITS field in the GIC_SH_CONFIG
register. To derive the total width of the counter, the following formula isused:

32 + COUNTBITS x 4

Where:

‘32’ is the width of the GIC_SH_CounterLo register and ‘COUNTBITS’ is the value in the COUNTBITS field
of the GIC_SH_CONFIG register.

Since the COUNTBITS field contains a fixed value of 0x8, the overall width of the counter would be:

32 + 8 x 4 = 64 bits

In the GIC design, the COUNTBITS field is fixed at a value of 0x8, indicating a total counter size of 64-bits.

GIC Watchdog Timer
Each core supports a Watchdog timer that is controlled by the following three registers:

• The GIC Watchdog Timer Configuration Register, GIC_COREi_WD_CONFIG, is local to each processor
and reports state information and configures the characteristics of the timer.

• The Watchdog Timer Initial Count Register, GIC_COREi_WD_INITIAL, is local to each processor and is
used to set the timer interval.

• The Watchdog Timer Count Register, GIC_VPEi_WD_COUNT, is a read-only register local to each
processor that contains the current value of the countdown.

GIC Watchdog Timer Configuration Register
The GIC Watchdog Timer Configuration register contains bits that control the function of the timer.

• Clearing the WAIT bit of GIC_COREi_WD_CONFIG register (default value) causes the counter to stop
counting when the processor is executing a wait instruction or is in a low power state controlled by the
Cluster Power Controller. Setting this bit to 1 will cause it to continue counting down in these states.
Usually this bit is left unset.

• Clearing the Debug bit (default value) causes the counter to stop the count when the processor enters
debug mode. When set the count continues counting down. Usually this bit is left unset.

• The TYPE field in bits 3:1 of this register determines what happens when the timer reaches 0.

GIC Watchdog Timer Modes
Encoding Mode Behavior

0x2 One Trip An interrupt is asserted and the timer stops.

 145

9 Global Interrupt Controller — Revision 01.20

Encoding Mode Behavior

0x1 Second
Countdown

An interrupt is asserted and the timer reloads. If the timer expires for the
second time before being reloaded again all processors in the CPS will be
reset.

This mode provides a way to distinguish between a software hang and a
hardware hang. Usually the Watchdog Timer Interrupt is routed to NMI. This
will cause the processor to soft reboot. In this mode that is what happens
when the timer expires the first time so if this was a software hang during
the reboot the software should reload the Watchdog Timer thus avoiding the
second expiration. If the processor itself does not respond to the interrupt
then it is assumed to be a hardware issue so when the count expires the
second time a reset signal will be sent to all processors in the system.

0x3 Programmable
Interval Timer

An interrupt is asserted, the initial count is reloaded and the time starts
counting down again interrupting each time the counter reaches 0.

This mode provides a per processor interval timer. This is one mode where
the interrupt should not be routed to NMI. It should instead be routed to a
normal interrupt where for example the interrupt could be used in a time
slicing OS.

Clearing the WDEN bit disables the timer and when it is set it enables the timer. Writing WDEN with a 1
triggers a reloads the GIC_VPE_WD_COUNT register with the value in the GIC_COREi_WD_INITIAL
register. Refer to "Watchdog Timer Config Register" for more information.

Watchdog Timer Initial Count Register
The Watchdog Timer Initial Count Register, GIC_COREi_WD_INITIAL is local to each processor and
is used to set the timer interval. To start the counter for the first time the counter should be disabled by
clearing the WDEN bit in the GIC_COREi_WD_CONFIG register and the countdown value loaded into
this register and then the counter enabled by setting the WDEN bit. Refer to "Watchdog Timer Initial Count
Register" for more information.

Watchdog Timer Count Register
The Watchdog Timer Count Register, GIC_VPE_WD_COUNT is a read only register local to each
processor that contains the current value of the countdown. This register is reloaded with the value in the
GIC_COREi_WD_INITIAL register each time the WDEN bit in the GIC_COREi_WD_CONFIG register is
set.

Refer to "Watchdog Timer Count Register" for more information.

Configuring the Watchdog Timer
Software can configure the WatchDog timer with a starting count value by programming the WatchDog
Timer Initial Count register (GIC_VPEi_WD_INITIAL) located at offset address 0x0098. Refer to “Watchdog
Timer Initial Count Register” for more information.

146

9 Global Interrupt Controller — Revision 01.20

9.4.7 Local Interrupt Routing

Routability of Local Interrupts
Local interrupts (except for the Watchdog timer, GIC Interval Timer and software interrupts) can be
hardwired to local pins when the CPS is configured or can be more flexible and left to software to route
the local interrupts to local pins on the processor. The Local Interrupt Control Register, GIC_VPEi_CTL,
reports the routable state of the local interrupts. If the bit for the particular interrupt is set then the interrupt
is routable within the GIC. The following table describes the behavior if not set.

Bits 4:1 of the GIC_VPEi_CTL register determines the routing of the following interrupts. In the I7200 GIC
design, these bits are hard-wired to 1. Note that Software Interrupts from the VPE are routed internally by
the CPU in vectored interrupt mode, and are only routed through the GIC when the GIC is in EIC mode,
regardless of the GIC_VPEi_CTL register.

GIC_COREi_CTL Register Fields
Bit Field Name Behavior if cleared

FDC_ROUTABLE The CPU Fast Debug Channel Interrupt is hardwired to one of the SI_Int pins as
described by the CPU's COP0 IntCtlIPFDCI register field.

SWINT_ROUTABLE The CPU SW Interrupts are routed back to the CPU directly.

PERFCOUNT_ROUTABLE The CPU Performance Counter Interrupt is hardwired to one of SI_Int pins as
described by the CPU's COP0 IntCtlIPPCI register field.

TIMER_ROUTABLE The CPU Timer Interrupt is hardwired to one of the SI_Int pins, as described by the
CPU's COP0 IntCtlIPTI register field

Routing Local Interrupts
If a local interrupt is routable it can be routed to a local signal of the local processor, much the same as an
external interrupt.

There is a Local Interrupt Map to Pin Register for each local interrupt source that further maps the local
interrupt to a specific input on the processor. There are three bits, MAP_TO_PIN, MAP_TO_NMI, and
MAP_TO_YQ that control the type of input that is assigned to the interrupt source. Only one of these bits
can be set at any one time.

• If set the MAP_TO_PIN bit will map the local interrupt source to Interrupt Pending bits in the CP0 Cause
register of the processor. The actual Interrupt Pending bit is set in the MAP field of this register. The
MAP Field of this register contains the encoded value of the number (0 -63). For example, a value of
0x20 asserts Interrupt 32 (decimal). For vectored interrupt mode, only use values of 0x0 to 0x5.

• If set the MAP_TO_NMI bit will map the local interrupt source to the NMI bit in the CP0 Status register.
This in essence will cause the processor to soft boot using the boot exception vector as the start of the
interrupt routine.

• If set the MAP_TO_YQ bit will map the local interrupt source to an MT Yield Qualifier pin. The actual
Yield Qualifier setting is set in the MAP field of the register.

Each of these interrupt types is described in the following subsections. The following table lists the
registers and associated bits that would be programmed to facilitate each type of interrupt described
above.

Table 101: Local Interrupt Masking and Mapping Register Usage Per Interrupt Type

Interrupt Register Name Offset Bits
Used

Function

WatchDog GIC_VPEi_PEND 0x0004 0 Set by hardware on a local WatchDog timer
interrupt.

 149

9 Global Interrupt Controller — Revision 01.20

Interrupt Register Name Offset Bits
Used

Function

GIC_VPEi_MASK 0x0008 0 Set by hardware based on the state of bit 0
of the SMASK and RMASK registers. Used
to determine whether the interrupt will be
processed or ignored.

GIC_VPEi_RMASK 0x000C 0 Used by software to disable WatchDog timer
interrupts.

GIC_VPEi_SMASK 0x0010 0 Used by software to enable WatchDog timer
interrupts.

GIC_VPEi_WD_MAP 0x0040 31,
5:0

Used by software to map the WatchDog timer
interrupt to one of the SI_Int[5:0] pins of the
I7200 VPE.

GIC_VPEi_PEND 0x0004 1 Set by hardware on a local Count/Compare
interrupt.

GIC_VPEi_MASK 0x0008 1 Set by hardware based on the state of bit 1
of the SMASK and RMASK registers. Used
to determine whether the interrupt will be
processed or ignored.

GIC_VPEi_RMASK 0x000C 1 Used by software to disable Count/Compare
interrupts.

GIC_VPEi_SMASK 0x0010 1 Used by software to enable Count/Compare
interrupts.

Count and
Compare

GIC_VPEi_
COMPARE_MAP

0x044 31,
5:0

Used by software to map the Count/Compare
interrupt to one of the SI_Int[5:0] pins of the
I7200 VPE.

GIC_VPEi_PEND 0x0004 2 Set by hardware on a local timer interrupt.

GIC_VPEi_MASK 0x0008 2 Set by hardware based on the state of bit 2
of the SMASK and RMASK registers. Used
to determine whether the interrupt will be
processed or ignored.

GIC_VPEi_RMASK 0x000C 2 Used by software to disable timer interrupts.

GIC_VPEi_SMASK 0x0010 2 Used by software to enable timer interrupts.

Timer

GIC_VPEi_
TIMER_MAP

0x048 31,
5:0

Used by software to map the timer interrupt to
one of the SI_Int[5:0] pins of the I7200 VPE.

GIC_VPEi_PEND 0x0004 3 Set by hardware on a performance counter
interrupt.

GIC_VPEi_MASK 0x0008 3 Set by hardware based on the state of bit 3
of the SMASK and RMASK registers. Used
to determine whether the interrupt will be
processed or ignored.

GIC_VPEi_RMASK 0x000C 3 Used by software to disable performance
counter interrupts.

Performance
Counter

GIC_VPEi_SMASK 0x0010 3 Used by software to enable performance counter
interrupts.

150

9 Global Interrupt Controller — Revision 01.20

Interrupt Register Name Offset Bits
Used

Function

GIC_VPEi_
PERFCTR_MAP

0x0050 31,
5:0

Used by software to map the performance
counter interrupt to one of the SI_Int[5:0] pins of
the I7200 VPE.

GIC_VPEi_PEND 0x0004 4 Set by hardware on a software interrupt 0
occurrence.

GIC_VPEi_MASK 0x0008 4 Set by hardware based on the state of bit 4
of the SMASK and RMASK registers. Used
to determine whether the interrupt will be
processed or ignored.

GIC_VPEi_RMASK 0x000C 4 Used by software to disable software interrupt 0
interrupts.

GIC_VPEi_SMASK 0x0010 4 Used by software to enable software interrupt 0
interrupts.

Software
Interrupt 0

GIC_VPEi_
SWInt0_MAP

0x0054 31,
5:0

Used by software to map software interrupt 0 to
one of the SI_Int[5:0] pins of the I7200 VPE.

GIC_VPEi_PEND 0x0004 5 Set by hardware on a software interrupt 1
occurrence.

GIC_VPEi_MASK 0x0008 5 Set by hardware based on the state of bit 5
of the SMASK and RMASK registers. Used
to determine whether the interrupt will be
processed or ignored.

GIC_VPEi_RMASK 0x000C 5 Used by software to disable software interrupt 1
interrupts.

GIC_VPEi_SMASK 0x0010 5 Used by software to enable software interrupt 1
interrupts.

Software
Interrupt 1

GIC_VPEi_
SWInt1_MAP

0x0058 31,
5:0

Used by software to map software interrupt 1 to
one of the SI_Int[5:0] pins of the I7200 VPE.

GIC_VPEi_PEND 0x0004 6 Set by hardware on a Fast Debug Channel
(FDC) interrupt.

GIC_VPEi_MASK 0x0008 6 Set by hardware based on the state of bit 6
of the SMASK and RMASK registers. Used
to determine whether the interrupt will be
processed or ignored.

GIC_VPEi_RMASK 0x000C 6 Used by software to disable FDC interrupts.

GIC_VPEi_SMASK 0x0010 6 Used by software to enable FDC interrupts.

Fast Debug
Channel

GIC_VPEi_FDC_MAP 0x004C 31,
5:0

Used by software to map the FDC interrupt to
one of the SI_Int[5:0] pins of the I7200 VPE.

 151

9 Global Interrupt Controller — Revision 01.20

Software can affect the state of this register using the write-only Local Interrupt Set Mask register
(GIC_VPEi_SMASK) at offset address 0x0010 and the Local Interrupt Reset Mask register
(GIC_VPEi_RMASK) at offset address 0x000C. Software sets bit 1 of the SMASK register to enable
the count and compare interrupt, or it can set bit 1 of the RMASK register to disable count and compare
interrupts.

Once hardware has determined the masking characteristics of the interrupt, it uses the Count/Compare
Map-to-Pin register at offset address 0x0044 to determine which SI_Int[5:0], NMI, or YR_ysi[15:0] pins
the interrupt will be driven onto. In vectored interrupt mode, bits 5:0 of this register are used to select
one of 6 VPE interrupts. In this mode, only encodings 0 - 5 are valid. In EIC mode, the VPE encodes this
field to support up to 63 interrupts. For example, if software programs this field with a value of 0x20, then
the WatchDog timer interrupt corresponds to interrupt level 32. This encoded value is then driven onto
SI_Int[5:0].

Timer Interrupts
When a timer interrupt is generated, hardware sets bit 2 of the Local Interrupt Pending register
(GIC_VPEi_PEND) at offset address 0x0004. Hardware then reads the state of bit 2 in the Local Interrupt
Mask register (GIC_VPEi_MASK) at offset address 0x0008 to determine whether the timer interrupt has
been masked. The GIC_VPEi_MASK register is a read-only register.

Software can affect the state of this register using the write-only Local Interrupt Set Mask register
(GIC_VPEi_SMASK) at offset address 0x0010 and the Local Interrupt Reset Mask register
(GIC_VPEi_RMASK) at offset address 0x000C. Software sets bit 2 of the SMASK register to enable the
timer interrupt, or it can set bit 2 of the RMASK register to disable timer interrupts.

Once hardware has determined the masking characteristics of the interrupt, it uses the Timer Map-to-Pin
register at offset address 0x0048 to determine which SI_Int[5:0], NMI, or YR_ysi[15:0] pins the interrupt
will be driven onto. In non-EIC mode, bits 5:0 of this register are used to select one of 6 VPE interrupts. In
non-EIC mode, only encodings 0 - 5 are valid. In EIC mode, the VPE encodes this field to support up to 63
interrupts.

The following example code sets the local timer interrupt to interrupt vector 5

#define GIC_BASE_ADDR 0x1bdc0000 // MPU Direct address address of the GIC
 // (may be different for your configuration)
#define GIC_CORE_LOCAL_SECTION_OFFSET 0x8000
#define GIC_COREL_CTL 0x0000
#define TIMER_ROUTABLE_SHIFT 1
#define TIMER_ROUTABLE_BITS 1
#define GIC_COREL_TIMER_MAP 0x0048

// Initialize configuration of for vpe interrupts
li a1, (GIC_BASE_ADDR | GIC_CORE_LOCAL_SECTION_OFFSET)
lw a3, GIC_COREL_CTL(a1)

map_timer_int:
ext a0, a3, TIMER_ROUTABLE_BITS, TIMER_ROUTABLE_SHIFT
beqz a0, map_perfcount_int // not routable go to configuration of performance
 // counter interrupts
li a0, 0x80000005 // Int5 is selected for timer routing
sw a0, GIC_COREL_TIMER_MAP(a1)

Performance Counter Interrupts
When a timer interrupt is generated, hardware sets bit 3 of the Local Interrupt Pending register
(GIC_VPEi_PEND) at offset address 0x0004. Hardware then reads the state of bit 3 in the Local Interrupt
Mask register (GIC_VPEi_MASK) at offset address 0x0008 to determine whether the performance counter
interrupt has been masked. The GIC_VPEi_MASK register is a read-only register.

Software can affect the state of this register using the write-only Local Interrupt Set Mask register
(GIC_VPEi_SMASK) at offset address 0x0010 and the Local Interrupt Reset Mask register
(GIC_VPEi_RMASK) at offset address 0x000C. Software sets bit 3 of the SMASK register to enable the
performance counter interrupt, or it can set bit 3 of the RMASK register to disable timer interrupts.

 153

9 Global Interrupt Controller — Revision 01.20

Once hardware has determined the masking characteristics of the interrupt, it uses the Performance
Counter Map-to-Pin register at offset address 0x0050 to determine which SI_Int[5:0], NMI, or YR_ysi[15:0]
pins the interrupt will be driven onto. In non-EIC mode, bits 5:0 of this register are used to select one of 6
VPE interrupts. In non-EIC mode, only encodings 0 - 5 are valid. In EIC mode, the VPE encodes this field
to support up to 63 interrupts.

The following example code sets the performance counter interrupts to local interrupt vector 4. Note this
code follows the previous code example for the timer interrupt.

#define GIC_COREL_PERFCTR_MAP 0x0050
#define PERFCOUNT_ROUTABLE_SHIFT 2
#define PERFCOUNT_ROUTABLE_BITS 1

map_perfcount_int:
ext a0, a3, PERFCOUNT_ROUTABLE_BITS PERFCOUNT_ROUTABLE_SHIFT
beqz a0, done_gic // not routable go to done
li a0, 0x80000004 // Int4 is selected for performance routing
sw a0, GIC_COREL_PERFCTR_MAP(a1)

done_gic:

Software Interrupts
Each VPE provides two software interrupts; 0 and 1. Software interrupts originate from the CPU and are
only used in EIC mode. In non-EIC mode they are routed internally.

When software interrupt 0 is generated, hardware sets bit 4 of the Local Interrupt Pending register
(GIC_VPEi_PEND) at offset address 0x0004. Hardware then reads the state of bit 4 in the Local Interrupt
Mask register (GIC_VPEi_MASK) at offset address 0x0008 to determine whether the performance counter
interrupt has been masked. The GIC_VPEi_MASK register is a read-only register.

Software can affect the state of this register using the write-only Local Interrupt Set Mask register
(GIC_VPEi_SMASK) at offset address 0x0010 and the Local Interrupt Reset Mask register
(GIC_VPEi_RMASK) at offset address 0x000C. Software sets bit 4 of the SMASK register to enable the
software interrupt 0, or it can set bit 4 of the RMASK register to disable software interrupt 0.

Once hardware has determined the masking characteristics of the interrupt, it uses the Software Interrupt
0 Map-to-Pin register at offset address 0x0054 to determine which SI_Int[5:0], NMI, or YR_ysi[15:0] pins
the interrupt will be driven onto. In non-EIC mode, bits 5:0 of this register are used to select one of 6 VPE
interrupts. In non-EIC mode, only encodings 0 - 5 are valid. In EIC mode, the VPE encodes this field to
support up to 63 interrupts.

The sequence is the same for software interrupt 1, except that bit 5 of each register noted above is set
instead of bit 4. In addition, software uses the Software Interrupt 1 Map-to-Pin register at offset address
0x0058 to determine which SI_Int[5:0] pin the interrupt will be driven onto.

Fast Debug Channel Interrupts
When a Fast Debug Channel (FDC) interrupt is generated, hardware sets bit 6 of the Local Interrupt
Pending register (GIC_VPEi_PEND) at offset address 0x0004. Hardware then reads the state of bit 6 in the
Local Interrupt Mask register (GIC_VPEi_MASK) at offset address 0x0008 to determine whether the fast
debug channel interrupt has been masked. The GIC_VPEi_MASK register is a read-only register.

Software can affect the state of this register using the write-only Local Interrupt Set Mask register
(GIC_VPEi_SMASK) at offset address 0x0010 and the Local Interrupt Reset Mask register
(GIC_VPEi_RMASK) at offset address 0x000C. Software sets bit 6 of the SMASK register to enable
the fast debug channel interrupt, or it can set bit 6 of the RMASK register to disable fast debug channel
interrupts.

Once hardware has determined the masking characteristics of the interrupt, it uses the Fast Debug
Channel Map-to-Pin register at offset address 0x004C to determine which SI_Int[5:0], NMI, or YR_ysi[15:0]
pins the interrupt will be driven onto. In non-EIC mode, bits 5:0 of this register are used to select one of 6
VPE interrupts. In non-EIC mode, only encodings 0 - 5 are valid. In EIC mode, the I7200 VPE encodes this
field to support up to 63 interrupts.

154

9 Global Interrupt Controller — Revision 01.20

9.4.8 EIC Mode Setting
EIC mode is controlled through software by setting the EIC_MODE bit in the Local interrupt Control
Register, GIC_VPE_CTL. Setting this bit enables EIC mode. This bit defaults to 0, vectored interrupt mode.

9.4.9 Enabling, Disabling, and Polling Local Interrupts
The Enabling, Disabling and Polling of local interrupts is configured through several registers in the GIC
that are local to each processor.

There are 4 registers for Enabling, Disabling and Polling of local interrupts:

• Enabling an interrupt using the GIC Local Set Mask Registers, GIC_VPE_SMASK

• Disabling an interrupt using the GIC Local Reset Mask Registers, GIC_VPE_RMASK

• Determining the Enable/Disable state of an interrupt state using GIC Local Interrupt Mask Register,
GIC_VPE_MASK

• Polling the interrupt active state using the GIC Local Interrupt Pending Register, GIC_VPE_PEND

Enabling External Interrupts
The GIC Local Set Mask Register, GIC_VPE_SMASK, is used to enable individual local interrupts. For
synchronization purposes this is a write only register. Setting the bit enables the interrupt. The following
table shows which field to set for each local interrupt.

Enabling External Interrupts
Field Name Interrupt Controlled

FDC_MASK_SET Fast Debug Channel

SWINT1_MASK_SET Software interrupt 1

SWINT2_MASK_SET Software interrupt 2

PERFCOUNT_MASK_SET Local Performance Counter

TIMER_MASK_SET CP0 Local Count/Compare Timer

COMPARE_MASK_SET GIC Local Count/Compare Timer

WD_MASK_SET Watchdog

Disabling External Interrupts
The GIC Local Reset Mask Register, GIC_VPE_RMASK, is used to disable individual local interrupts.
For CPS synchronization purposes this is a write only register. Setting the bit disables the interrupt. The
following table shows which field to set for each local interrupt.

Disabling External Interrupts
Field Name Interrupt Controlled

FDC_RESET_MASK Fast Debug Channel

SWINT1_RESET_MASK Software interrupt 1

SWINT2_RESET_MASK Software interrupt 2

PERFCOUNT_RESET_MASK Local Performance Counter

TIMER_RESET_MASK CP0 Local Count/Compare Timer

COMPARE_RESET_MASK GIC Local Count/Compare Timer

WD_RESET_MASK Watchdog

 155

9 Global Interrupt Controller — Revision 01.20

Determining the Enabled or Disabled Interrupt state
The GIC Local Mask Register, GIC_VPE_MASK, is used to determine if a local interrupt is enabled. For
CPS synchronization purposes this is a read only register. If a bit is set the corresponding interrupt source
is enabled. If it is clear the corresponding interrupt is disabled. The following table shows which field
corresponds to each local interrupt.

Determining the Enabled of Disabled Interrupt State
Field Name Interrupt Controlled

FDC_MASK Fast Debug Channel

SWINT1_MASK Software interrupt 1

SWINT2_MASK Software interrupt 2

PERFCOUNT_MASK Local Performance Counter

TIMER_MASK CP0 Local Count/Compare Timer

COMPARE_MASK GIC Local Count/Compare Timer

WD_MASK Watchdog

Polling for an Active Interrupt
The GIC Pending Register, GIC_VPE_PEND, is used to determine if a external interrupt is active. This is
a read only register. If a bit is set the corresponding local interrupt is active. If it is clear the corresponding
interrupt is inactive. The following table shows which field corresponds to each local interrupt.

Table 102: Polling for an Active Interrupt

Field Name Interrupt Controlled

FDC_PEND Fast Debug Channel

SWINT1_PEND Software interrupt 1

SWINT2_PEND Software interrupt 2

PERFCOUNT_PEND Local Performance Counter

TIMER_PEND CP0 Local Count/Compare Timer

COMPARE_PEND GIC Local Count/Compare Timer

WD_PEND Watchdog

9.4.10 Debug Interrupt Generation
The GIC of the I7200 Multiprocessing System allows software to globally assert a debug interrupt to all
VPEs in the system. When the Send_DINT bit of the DINT Send to Group register (GIC_VB_DINT_SEND)
is set, the EJ_DINT_GROUP signal of the GIC is asserted. Based on the state of this signal and the VPE-

156

9 Global Interrupt Controller — Revision 01.20

Local GIC_VL_DINT_PART registers, hardware asserts the EJ_DINT signal of each VPE in the system.
This concept is shown in the following figure.

Figure 34: Global Debug Interrupt Generation in the GIC

9.5 Shared Register Set

GIC Register Field Types
For each register described below, field descriptions include the read/write properties of the field, and the
reset state of the field. For single bit fields, the name is truncated to a single character, which is then shown
outside brackets in the Fields|Name column. For the read/write properties of the field, the following notation
is used:

Register Field Types
Notation Hardware Interpretation Software Interpretation

R/W A field in which all bits are readable and writable by software and, potentially, by hardware.

Hardware updates of this field are visible by software reads. Software updates of this field are visible by
hardware reads.

If the reset state of this field is “Undefined,” either software or hardware must initialize the value before
the first read will return a predictable value. This should not be confused with the formal definition of
UNDEFINED behavior.

 157

9 Global Interrupt Controller — Revision 01.20

Notation Hardware Interpretation Software Interpretation

R A field that is either static or is updated only by
hardware.

If the Reset State of this field is either “0” or
“Preset”, hardware initializes this field to zero or to
the appropriate state, respectively, on power up.

If the Reset State of this field is “Undefined”,
hardware updates this field only under those
conditions specified in the description of the field.

A field to which the value written by software is
ignored by hardware. Software may write any
value to this field without affecting hardware
behavior. Software reads of this field return the last
value updated by hardware.

If the Reset State of this field is “Undefined,”
software reads of this field result in an
UNPREDICTABLE value except after a hardware
update done under the conditions specified in the
description of the field.

W A field that can be written by software but which can not be read by software. Software reads of this
field will return an UNDEFINED value.

0 A field that hardware does not update, and for
which hardware can assume a zero value.

A field to which the value written by software must
be zero. Software writes of non-zero values to this
field may result in UNDEFINED behavior of the
hardware. Software reads of this field return zero
as long as all previous software writes are zero.

If the Reset State of this field is “Undefined,”
software must write this field with zero before it is
guaranteed to read as zero.

Shared Section Register Map
The register map of the shared section is shown as follows. These registers are accessible by any VPE.
For the base address of this block, see Table 96: GIC Address Space on page 134.

All registers are 32 bits wide and should only be accessed using 32-bit uncached load/stores. Reads from
unpopulated registers in the GCMP address space should return 0x0, and writes to those locations should
be silently dropped without generating any exceptions.

The addresses for the registers within the Shared Section of the GIC are calculated as follows:

SharedSection_Register_Physical_Address=GIC_baseaddress+SharedSection_baseoffset+Re
 gister_Offset

Shared Section Register Map
Name Description

GIC Config Register (GIC_SH_CONFIG) Indicates the number of interrupts, number of VPEs, etc.

GIC CounterLo (GIC_SH_CounterLo)

GIC CounterHi (GIC_SH_CounterHi)

Shared Global Counter.

GIC Revision Register (GIC_RevisionID) RevisionID of the GIC hardware.

158

9 Global Interrupt Controller — Revision 01.20

Name Description

Global Interrupt Polarity Register0 (GIC_SH_POL31_0)

Global Interrupt Polarity Register1 (GIC_SH_POL63_32)

Global Interrupt Polarity Register2 (GIC_SH_POL95_64)

Global Interrupt Polarity Register3
(GIC_SH_POL127_96)

Global Interrupt Polarity Register4
(GIC_SH_POL159_128)

Global Interrupt Polarity Register5
(GIC_SH_POL191_160)

Global Interrupt Polarity Register6
6(GIC_SH_POL223_192)

Global Interrupt Polarity Register7
(GIC_SH_POL255_224)

Polarity of the interrupt. For Level Type:

0x0 - Active Low 0x1 - Active High

For Single Edge Type:

0x0 - Falling Edge used to set edge register 0x1 - Rising
Edge used to set edge register

At IP configuration time, the appropriate number of
these registers are instantiated to support the number of
External Interrupt Sources.

Global Interrupt Trigger Type Register0
(GIC_SH_TRIG31_0)

Global Interrupt Trigger Type Register1
(GIC_SH_TRIG63_32)

Global Interrupt Trigger Type Register2
(GIC_SH_TRIG95_64)

Global Interrupt Trigger Type Register3
(GIC_SH_TRIG127_96)

Global Interrupt Trigger Type Register4
(GIC_SH_TRIG159_128)

Global Interrupt Trigger Type Register5
(GIC_SH_TRIG191_160)

Global Interrupt Trigger Type Register6
(GIC_SH_TRIG223_192)

Global Interrupt Trigger Type Register7
(GIC_SH_TRIG255_224)

Edge or Level triggered 0x0 - Level

0x1 - Edge

At IP configuration time, the appropriate number of
these registers are instantiated to support the number of
External Interrupt Sources.

Global Interrupt Dual Edge Register
(GIC_SH_DUAL31_0)

Global Interrupt Dual Edge Register
(GIC_SH_DUAL63_32)

Global Interrupt Dual Edge Register
(GIC_SH_DUAL95_64)

Global Interrupt Dual Edge Register
(GIC_SH_DUAL127_96)

Global Interrupt Dual Edge Register
(GIC_SH_DUAL159_128)

Writing a 0x1 to any bit location sets the appropriate
external interrupt source to be type dual-edged.

At IP configuration time, the appropriate number of
these registers are instantiated to support the number of
External Interrupt Sources.

 159

9 Global Interrupt Controller — Revision 01.20

Name Description

Global Interrupt Dual Edge Register
(GIC_SH_DUAL191_160)

Global Interrupt Dual Edge Register
(GIC_SH_DUAL223_192)

Global Interrupt Dual Edge Register
(GIC_SH_DUAL255_224)

Global Interrupt Write Edge Register (GIC_SH_WEDGE) Used for Interrupt Messages. Writes to this register
atomically set or clear a specified bit in the Edge Detect
Register.

Global Interrupt Reset Mask Register
(GIC_SH_RMASK31_0)

Global Interrupt Reset Mask Register
(GIC_SH_RMASK63_32)

Global Interrupt Reset Mask Register
(GIC_SH_RMASK95_64)

Global Interrupt Reset Mask Register
(GIC_SH_RMASK127_96)

Global Interrupt Reset Mask Register
(GIC_SH_RMASK159_128)

Global Interrupt Reset Mask Register
(GIC_SH_RMASK191_160)

Global Interrupt Reset Mask Register
(GIC_SH_RMASK223_192)

Global Interrupt Reset Mask Register
(GIC_SH_RMASK255_224)

Writing a 0x1 to any bit location masks off (disables) that
interrupt.

At IP configuration time, the appropriate number of
these registers are instantiated to support the number of
External Interrupt Sources.

Global Interrupt Set Mask Register
(GIC_SH_SMASK31_00)

Global Interrupt Set Mask Register
(GIC_SH_SMASK63_32)

Global Interrupt Set Mask Register
(GIC_SH_SMASK95_64)

Global Interrupt Set Mask Register
(GIC_SH_SMASK127_96)

Global Interrupt Set Mask Register
(GIC_SH_SMASK159_128)

Global Interrupt Set Mask Register
(GIC_SH_SMASK191_160)

Global Interrupt Set Mask Register
(GIC_SH_SMASK223_192)

Global Interrupt Set Mask Register
(GIC_SH_SMASK255_224)

Writing a 0x1 to any bit location sets the mask (enables)
for that interrupt.

At IP configuration time, the appropriate number of
these registers are instantiated to support the number of
External Interrupt Sources.

160

9 Global Interrupt Controller — Revision 01.20

Name Description

Global Interrupt Mask Register (GIC_SH_MASK31_00)

Global Interrupt Mask Register (GIC_SH_MASK63_32)

Global Interrupt Mask Register (GIC_SH_MASK95_64)

Global Interrupt Mask Register (GIC_SH_MASK127_96)

Global Interrupt Mask Register
(GIC_SH_MASK159_128)

Global Interrupt Mask Register
(GIC_SH_MASK191_160)

Global Interrupt Mask Register
(GIC_SH_MASK223_192)

Global Interrupt Mask Register
(GIC_SH_MASK255_224)

Shows the enabled global interrupts. If bit N is set, global
interrupt N is enabled.

At IP configuration time, the appropriate number of
these registers are instantiated to support the number of
External Interrupt Sources.

Global Interrupt Pending Register
(GIC_SH_PEND31_00)

Global Interrupt Pending Register
(GIC_SH_PEND63_32)

Global Interrupt Pending Register
(GIC_SH_PEND95_64)

Global Interrupt Pending Register
(GIC_SH_PEND127_96)

Global Interrupt Pending Register
(GIC_SH_PEND159_128)

Global Interrupt Pending Register
(GIC_SH_PEND191_160)

Global Interrupt Pending Register
(GIC_SH_PEND223_192)

Global Interrupt Pending Register
(GIC_SH_PEND255_224)

Shows the pending global interrupts before masking. If bit
N is set, the global interrupt N is pending.

At IP configuration time, the appropriate number of
these registers are instantiated to support the number of
External Interrupt Sources.

Global Interrupt Map Src0 to Pin Register
(GIC_SH_MAP0_PIN)

Global Interrupt Map Src1 to Pin Register
(GIC_SH_MAP1_PIN)

Global Interrupt Map Src2 to Pin Register
(GIC_SH_MAP2_PIN)

...

Global Interrupt Map Src255 to Pin Register
(GIC_SH_MAP255_PIN)

Maps this interrupt source to a particular pin - within
Int[5:0] or NMI.

At IP configuration time, the appropriate number of
these registers are instantiated to support the number of
External Interrupt Sources.

 161

9 Global Interrupt Controller — Revision 01.20

Name Description

Global Interrupt Map Src0 to VPE Register
(GIC_SH_MAP0_VPE31_0)

Global Interrupt Map Src1 to VPE Register
(GIC_SH_MAP1_VPE31_0)

Global Interrupt Map Src2 to VPE Register
(GIC_SH_MAP2_VPE31_0)

....

Global Interrupt Map Src255 to VPE Register
(GIC_SH_MAP255_VPE31_0)

Assigns this interrupt source to a particular VPE.

At IP configuration time, the appropriate number of
these registers are instantiated to support the number of
External Interrupt Sources and the number of VPEs.

DINT Send to Group Register (GIC_VB_DINT_SEND) Sends the DebugInterrupt to the specified VPE.

Reserved for future extensions Reserved for future extensions.

9.6 GIC User-Mode Visible Section
The Shared, VPE-local, and VPE-other sections are meant to be located in privileged system virtual
address space, in which only kernel mode software can initialize and update the interrupt controller.

A separate 64 KB address space is allocated so that it may be mapped to user-mode virtual address
space. Within this address space are aliases for GIC registers that are read so often that it makes sense
to make them available to user-mode programs without requiring a system call. The aliases for these
registers are read-only. Currently, the only registers that are aliased into this space are the shared Counter
registers.

The addresses for the registers within the User-Mode Visible Section of the GIC are calculated as follows:

SharedSection_Register_Physical_Address = GIC_baseaddress + UMVisible_Section_baseoffset +
Register_Offset

User-Mode Visible Section Register Map
Register Offset Name Type Description

0x0000 GIC CounterLo
(GIC_SH_CounterLo)

R Read-only alias for GIC Shared CounterLo.

0x0004 GIC CounterHi
(GIC_SH_CounterHi)

R Read-only alias for GIC Shared CounterHi.

Any Other Offsets Reserved Reserved for future extensions.

 162

10 Policy Manager — Revision 01.20

10 Policy Manager
The Policy Manager (PM) provides longer-term hints to the Dispatch Scheduler to achieve the desired system
performance allocation. The I7200 core embeds the Policy Manager. The CPU's internal hardware manages
the TC/VPE dispatch priorities based on two modes and four priority levels.

10.1 Thread Scheduling Unit
The I7200 core contains a unit called the Thread Scheduling Unit (TSU), which has two submodules: a
Dispatch Scheduler and a Policy Manager. Both blocks are internal to the processor core, it cannot be
modified by the customer.

Figure 35: TSU Block Diagram

CPU

Dispatch
Scheduler

Policy
Manager

TSU

The Dispatch Scheduler (DS) makes cycle-by-cycle choices on which instructions to issue/dispatch. The
DS is designed to be as simple as possible.

10.2 Policy Manager Modes
The I7200 code provides the following Policy Manager (PM) modes:
• Quality of Service (QoS)

• Weighted Round-Robin

These modes support thread-scheduling capabilities that are common to many systems.

10.2.1 QoS Mode
In this mode, threads are grouped into high and low priority. High-priority threads have significantly greater
resource allocation than low-priority threads. The thread priority level ranges from 3 to 0 (high to low). In
QoS mode, TC priority 0 is considered low priority while everything else is considered high priority.
• High-priority threads can be allocated any number of hardware resources without restriction.

• To limit hardware resource consumption by low priority threads, if any low-priority thread occupies
at least 1 WBB, FSB, or LDQ entry, subsequent instructions in the low priority threads will not be
dispatched..

High-priority threads that are allocatable or activated (not halted, offline, stalled, or blocked) execute before
low priority threads. Low-priority threads are only issued if high-priority threads cannot be issued and the
low-priority thread is not limited by hardware resource constraints.

 163

10 Policy Manager — Revision 01.20

While the high-priority threads are runnable, the CPU dispatches and issues instructions from them.
Threads are runnable if:
• Instructions are fetched and ready to be executed from the internal instruction buffer

• The thread is active (not halted or in an offline state)

• The thread is not suspended

The CPU reserves all but one of each of the available LDQ entries, FSB entries, and WBB entries for-high
priority threads. Low-priority threads use one LDQ, one FSB, or one WBB entry. If the available entries are
allocated to low-priority threads, the CPU stops issuing instructions from low-priority threads.

If the CPU has only high-priority threads or only low-priority threads, these threads are treated as equals
and instructions are issued in a round-robin style.

In QoS mode, the priorities are arranged as:
• If a thread with priority 3 exists, all priority 3 threads are high priority. All other threads are low priority.

• If no priority 3 exists, and an active thread with priority 2 exists, all priority 2 threads are high priority. All
other threads are low priority.

• If no priority 3 or 2 exist and an active thread with priority 1 exists, all priority 1 threads are high priority.
All other threads are low priority.

• If multiple threads have the same priority level, the CPU does not differentiate between these them:
resource allocation is round robin or first-come-first-serve.

The fetch order is:
1. Emergency mode: These threads have not fetched for a long time and risk starvation. The core gives

these threads a one-cycle opportunity to fetch.

2. Round-robin priority 3

3. Round-robin priority 2

4. Round-robin priority 1

5. Empty IBF: Empty instruction buffer. Any thread whose instruction buffer is empty will fetch regardless
of priority.

6. Last dispatched thread: If the previous criteria are not met, the next thread to fetch is the same as the
last issued thread.

7. Round robin

Stall and block conditions include (but are not limited to):

• EHB hazard resolution

• Execution of ERET, DERET, WAIT, YIELD

• Pending Yield resume

• Pending ITC

• Pending on PAUSE

• Blocked by policy manager

• I-cache CACHE op is pending on another I-cache CACHE op

• COP1 / COP2 dependencies, if present

• MDU execution

Limitations
The QoS mode sacrifices fair-share and performance in low-priority threads to guarantee that high-priority
threads are allocated with most of the CPU resources available. Software must be aware of this limitation.

164

10 Policy Manager — Revision 01.20

Low-priority threads should not use performance enhancing capabilities such as the UCA cacheability
attribute. The UCA CCA mode reserves a WBB entry and attempts to collect write-data before committing
the write. Because the low-priority TC is prevented from running while a WBB entry is reserved and a high
priority TC is active, the low-priority TC risks starvation until the high-priority TC is deprioritized.

10.2.2 Weighted Round-Robin Policy Mode
The weighted round robin mode attempts to execute high-priority thread instructions at a fixed rate
compared to low-priority thread instructions. This rate is fixed in hardware to be 8, 4, 2, or 1, however, it
may fluctuate due to pipeline behaviors or external events. CPU resources are allocated on a first-come,
first-served basis. If there are only high-priority threads or only low-priority threads in the CPU, these
threads are treated equally and instructions are issued in a round-robin style.

Each thread is assigned a priority level, and each priority level is assigned a weight. If threads have the
same priority level, the CPU does not differentiate between them and the weight is the same.
• Priority 3 has weight 8

• Priority 2 has weight 4

• Priority 1 has weight 2

• Priority 0 has weight 1

During every 16 cycles, threads in a priority group have an opportunity to issue. Threads in a higher priority
group or weight issue more often, but this behavior is dependent on the status of the CPU (such as stalls,
synchronization, and exceptions). Threads participating in the dispatch algorithm must be allocatable or
activated, not halted, offline, stalled, or blocked. Hardware resources (WBB, LDQ, and FSB) are allocated
on a first-come, first-served basis. A thread with more dispatch opportunities may consume more hardware
resources.

The fetch order is:

• Emergency mode

• Empty IBF: Empty instruction buffer. If the instruction buffer of a particular thread is empty, this thread
fetches.

• Last dispatched thread: If the previous criteria are not met, the next thread to fetch is the same as the
last issued thread.

• Round robin (similar to QoS mode)

Micro-architectural stall behaviors do not affect the fetch order.

10.2.3 CP0 Register Interface
The policies and thread priorities are always active. Software must write to MVPControl[16]
(POLICY_MODE) to indicate which policy mode to use (POLICY_MODE = 1 for QoS mode and
POLICY_MODE = 0 for weighted round robin mode).

A thread's priority is set in the CP0 TCSchedule PRIO bits. If the TCSchedule PRIO_EN bit is set, the
PRIO bits can be overridden by the per-TC external pin input, PM_Prio, if the pin value is higher than the
PRIO bits.

Instruction scheduling can be halted entirely if the TCSchedule TCHALT_EN bit is set and the external
PM_TCHaltTC pin is raised.

The pins and the bits work together as follows:

• PM_TCHaltTC0: Halts TC0 if TC0.TCSchedule.TCHALT_EN=1

• PM_TCHaltTC1: Halts TC1 if TC1.TCSchedule.TCHALT_EN=1

• PM_TCHaltTC2: Halts TC2 if TC2.TCSchedule.TCHALT_EN=1

• PM_TCHaltTC3: Halts TC3 if TC3.TCSchedule.TCHALT_EN=1

• PM_TCHaltTC4: Halts TC4 if TC4.TCSchedule.TCHALT_EN=1

 165

10 Policy Manager — Revision 01.20

• PM_TCHaltTC5: Halts TC5 if TC5.TCSchedule.TCHALT_EN=1

• PM_TCHaltTC6: Halts TC6 if TC6.TCSchedule.TCHALT_EN=1

• PM_TCHaltTC7: Halts TC7 if TC7.TCSchedule.TCHALT_EN=1

• PM_TCHaltTC8: Halts TC8 if TC8.TCSchedule.TCHALT_EN=1

• PM_Prio0[1:0]: Sets the priority of TC0 if TC0.TCSchedule.PRIO_EN=1, and PM_Prio0[1:0] is higher
than TC0.TCSchedule.PRIO[3:2]

• PM_Prio1[1:0]: Sets the priority of TC1 if TC1.TCSchedule.PRIO_EN=1, and PM_Prio1[1:0] is higher
than TC1.TCSchedule.PRIO[3:2]

• PM_Prio2[1:0]: Sets the priority of TC2 if TC2.TCSchedule.PRIO_EN=1, and PM_Prio2[1:0] is higher
than TC2.TCSchedule.PRIO[3:2]

• PM_Prio3[1:0]: Sets the priority of TC3 if TC3.TCSchedule.PRIO_EN=1, and PM_Prio3[1:0] is higher
than TC3.TCSchedule.PRIO[3:2]

• PM_Prio4[1:0]: Sets the priority of TC4 if TC4.TCSchedule.PRIO_EN=1, and PM_Prio4[1:0] is higher
than TC4.TCSchedule.PRIO[3:2]

• PM_Prio5[1:0]: Sets the priority of TC5 if TC5.TCSchedule.PRIO_EN=1, and PM_Prio5[1:0] is higher
than TC5.TCSchedule.PRIO[3:2]

• PM_Prio6[1:0]: Sets the priority of TC6 if TC6.TCSchedule.PRIO_EN=1, and PM_Prio6[1:0] is higher
than TC6.TCSchedule.PRIO[3:2]

• PM_Prio7[1:0]: Sets the priority of TC7 if TC7.TCSchedule.PRIO_EN=1, and PM_Prio7[1:0] is higher
than TC7.TCSchedule.PRIO[3:2]

• PM_Prio8[1:0]: Sets the priority of TC8 if TC8.TCSchedule.PRIO_EN=1, and PM_Prio8[1:0] is higher
than TC8.TCSchedule.PRIO[3:2]

The Policy Manager is controlled using the TCSchedule register (CP0 Register 2, Select 6).

• [0]: TCHALT_EN. Enables use of the external pins PM_TCHaltTC0 - PM_TCHaltTC8 and halts the
corresponding thread.

• [1]: PRIO_EN. Allows the external pins PM_Prio0[1:0] - PM_Prio8[1:0] to adjust thread priorities.

• [3:2]: PRIO. Holds the thread priority level.

 166

11 Inter-Thread Communication Unit — Revision 01.20

11 Inter-Thread Communication Unit
Inter-Thread Communication (ITC) Storage is a gating storage mechanism designed for low-level thread
synchronization. Loads and stores to and from gating storage may block until the state of the storage location
corresponds to some set of conditions required for completion. A blocked load or store can be precisely
aborted if necessary, and restarted later.

In the I7200 core, the ITC storage is provided by the Inter-Thread Communication Unit (ITU). This block of
logic resides outside of the core and connects to the core through the gating storage interface. SoC integrators
are free to use the MIPS-supplied reference module, or to implement their own ITU module, or to not use ITC
at all. This chapter describes the features of the sample ITU block supplied with the I7200 core. This block
supports synchronization of TCs across multiple I7200 cores.

11.1 ITC Address Space
The ITC physical address space is defined by two, 32-bit tag registers: ITCAddressMap0 and
ITCAddressMap1. These registers are referred to as ITC tags because they are accessed by the CACHE
IndxLoadTag and IndexStoreTag operations in the same manner as cache tags. The AddressMap registers
affect the address mapping of the overall ITU.

The tags in the ITC block are assessed using the CACHE instruction with a cache operation of index load
tag and index store tag. Before using these operations on the ITC tags, set the ITC bit in the CP0 Error
Control register. This setting directs the cache instruction to the ITC AddressMap registers instead of to the
L1D-Cache.

• AddressMap0 is accessed using a cacheop with VA offset zero.

• AddressMap1 is accessed using a cacheop with VA offset 0x8.

Together the ITCAddressMap0 and ITCAddressMap1 tag registers specify a 2N aligned block of uncached
memory.
• The ITCAddressMap0 register's BaseAddress field specifies the starting address of the ITC memory

block.

• The ITCAddressMap1 register's AddrMask determines the size of the memory block, which can be
varied from 1 KB to 128 KB.

Within this address space, ITC cells are spread out with a stride specified by the EntryGrain field. Tightly
spaced cells save on memory space, but widely spaced cells spread across a number of TLB pages,
permitting different cells to be mapped to different processes. The number of cells is specified by the
NumEntries field.

Table 103: ITC AddressMap0 Register Format

31 10 9 1 0
BaseAddress 0 En

Table 104: ITC AddressMap1 Register Format

31 30 20 19 17 16 10 9 3 2 0
M NumEntries 0 AddrMask 0 EntryGrain

 167

11 Inter-Thread Communication Unit — Revision 01.20

Table 105: ITU AddressMap0 Field Descriptions

Fields
Name Bit

Description
Read /
Write

Reset State

BaseAddress 31:10 The top [31:10] bits of the ITC Physical Memory
Mapped Block.

R/W Undefined

Unused 9:1 Must be written as zeros; return zeros on read. 0 0

En 0 ITC enable. R/W 0

Table 106: ITU AddressMap1 Field Descriptions

Register Fields Reset State
Name Bits

Address Map Register Tag1

Offset 8

Read/Write

M 31 This bit indicates if another ITC block is defined
along with another pair of ITC AddressMap
registers. On the I7200 core, this value is
hardcoded to 0.

R 0

NumEntries 30:20 Number of ITC cells present. R Preset

Unused 19:17 Must be written as zeros; return zeros on read. 0 0

AddrMask 16:10 Indicates which bits of the BaseAddress field
should not participate in determining an ITC
memory hit. This field effectively defines the size
of the ITC memory block. Setting AddrMask to
zero implies a 1 KB ITC address space, setting it
to 0x7f implies a 128 KB address space.

R/W Undefined

Unused 9:3 Must be written as zeros; return zeros on read. 0 0

Interval spacing between the ITC cells. Cells are
spaced at intervals of 128x2EntryGrain bytes.

Encoding Size in bytes

0x0 128

0x1 256

0x2 512

0x3 1024

0x4 2048

0x5 4096

0x6 8192

Entry Grain 2:0

0x7 16384

R/W Undefined

Depending on the setting of the AddrMask, NumEntries, and EntryGrain, it is possible that ITC cells do
not fill up the entire ITC address block. If for example, two cells are mapped to a 1KB area with a stride
of 256B (EntryGrain equal to 0x1), the first cell starts at offset 0x000 and the second at offset 0x100. The
remaining two 256B regions starting at offsets 0x200 and 0x300 do not map to any storage. Any access to
an address that does not map to an ITC entry will result in undefined behavior. It is also possible to set the
ITC registers in a way that makes some of the cells unavailable.

11.2 ITC Storage

168

11 Inter-Thread Communication Unit — Revision 01.20

The number and type of ITC cells implemented in the ITU is configurable. The possible configurations are:
0, 1, 2, 4, 8, or 16 four-entry FIFOs and 0, 1, 2, 4, 8, or 16 single-entry Semaphores. If the implementation
includes both types of cell, the FIFO cells will be grouped before the Semaphore cells. N number of
FIFO cells will be located at cell addresses 0 to N-1. M number of Semaphore cells will be located at cell
addresses N to N+M-1. The actual physical address is dependent on the base address and cell spacing.
See ITC Address Space on page 167 for more information on addressing.

The reference ITU supports two kinds of storage cells: four-entry FIFO queues and single-entry
Semaphore cells. All ITC cells are composed of the tag and data portions. In the single-entry cells, the data
is 32 bits wide. The FIFO cells store four 32-bit data values. Although the memory space allows for 64-
bit ITC cells, only the least-significant 32-bit words are present in this implementation. All ITC cells should
be accessed as aligned 32-bit memory. Partial-word access such as LH or SB will result in undefined
behavior.

11.3 ITC Views
All ITC cells can be accessed in one of 16 ways, called views, using standard load and store instructions.
The view is encoded in bits 6:3 of the memory address, such that the successive views of a cell correspond
to successive 64-bit-aligned addresses. The following table shows the addresses for the various views and
the effects of using each of the views. If the ITC location is of type FIFO, the behavior of some of the views
changes, and this is noted in the description of each view.

Table 107: Cell Views

Address[6:3] View Description
0x0 Bypass This view of the ITC location implies that a load or a store does not cause

the issuing thread to block and does not affect any of the cells state bits. The
operation of SC using this view is undefined.

Accesses using Bypass view never result in Gating Storage exceptions.

A Bypass view store to a FIFO ITC location overwrites the newest FIFO entry,
while a Bypass view load returns the contents of the oldest entry.

0x1 Control This view of the ITC location can be used to manipulate the tag of the ITC
cell. Loads and stores access the entire 32b tag value. Accesses using
Control view never cause the issuing thread to block and never result in
Gating Storage exceptions.

A Control view store to a FIFO location with the E bit set will cause the FIFO
to reset its read pointer.

0x2 Empty/Full
Synchronized

This view of the ITC location implies that a load causes the issuing thread to
block if the cell is Empty. Similarly, a store blocks if the cell is full. Accesses
using this view cause an automatic update of the Emptyand Fullbits to reflect
the new state of the cell. The operation of SC using this view is undefined.

If the T bit is set, then all E/F Synchronized view accesses, success or
failure, cause a gated exception trap.

 169

11 Inter-Thread Communication Unit — Revision 01.20

Address[6:3] View Description
0x3 Empty/Full Try This view of the ITC location is similar in nature to the previous E/F

Synchronized view in most respects other than the waiting policy on an
access failure. It is to be used if the issuing thread can potentially find
something else to do and does not wish to be blocked if the access fails.
A load with this view returns a value of zero if the cell is Empty, regardless
of actual data contained. Otherwise the load behaves as in the E/F
Synchronized case. Normal Stores to Full locations through the E/F Try view
fail silently to update the contents of the cell, rather than block the thread.
SC (Store Conditional) instructions referencing the E/F Try view will indicate
success or failure based on whether the ITC store succeeds or fails.

If the T bit is set, then all E/F Try view accesses, success or failure, cause a
gated exception trap.

0x4 P/V Synchronized This view of the ITC location does not modify the Empty and Full bits, both
of which are assumed to be cleared as part of the cell initialization routine.
Loads with this view return the current cell data value if the value is non-
zero, and cause an atomic post-decrement of the value. If the cell value is
zero, loads block until the cell takes a non-zero value. Normal Stores cause
an atomic increment of the cell value, up to a maximum of 0xFFFF at which
point the value saturates. Loads check the least significant 16 bits of the cell
for a 0x0 irrespective of load size. The operation of SC using this view is
undefined.

If the T bit is set, then all P/V Synchronized view accesses, success or
failure, cause a gated exception trap.

P/V Synchronized view accesses are not allowed to FIFO ITC locations.

0x5 P/V Try This view of the ITC location is similar in nature to the previous P/V
Synchronized view in most respects other than the waiting policy on an
access failure. It is to be used if the issuing thread can potentially find
something else to do and does not wish to be blocked if the access fails. A
load with this view returns a value of zero even if the cell con- tains a data
value of 0x0. Otherwise the load behaves as in the E/F Synchronized case.
Normal stores using this view cause a saturating atomic increment of the cell
value (saturating to 0xFFFF), as described for the P/V Synchronized view,
and cannot fail. The operation of SC using this view is undefined.

If the T bit is set, then all P/V Try view accesses, success or failure, will
cause a gated exception trap.

P/V Try view accesses are not allowed to FIFO ITC locations.

0x6 - 0xF Reserved These views are reserved and should not be used by software.

The Control View of an ITU cell contains the state of that individual cell, i.e., control bits that regulate
accesses to that cell. In addition to the E (Empty) and F (Full) fields specified by the MT ASE, the tag
contains four implementation-specific fields: T, FIFO, FIFODepth, and FIFOPtr.
• The FIFO and FIFODepth fields indicate whether a cell is a FIFO and its depth.

• The FIFOPtr indicates how many elements are currently in a FIFO; this field is always zero for single-
entry cells. The FIFOPtr can be reset by writing 1 into the E field of a FIFO.

• The T field indicates whether a Gating Storage exception should be signaled on an E/F or Proberen/
Verhogen (P/V) view access to the cell. In the P/V semaphore, Proberen and Verhogen mean test and
increment, respectively.

The following table shows the Control View format.

170

11 Inter-Thread Communication Unit — Revision 01.20

Table 108: Control View Format

Name Bit Description Read/Write Reset State
FIFODepth 31:28 Log2 of the cell depth. This field is set to 0x0 for

single- entry cells, and to 0x2 for four-entry FIFO
cells.

R Preset

Unused 27:21 Must be written as zeros; return zeros on read. 0 0

FIFOPtr 20:18 This field indicates the number of elements in a
FIFO cell, and always reads zero for single-entry
Semaphore cells.

R 0

FIFO 17 Indicates the cell type. 1 for FIFO cells and 0 for
single-entry Semaphore cells.

R Preset

T 16 Trap Bit. When set, this bit causes the processor
to take a Gating Storage Exception on PV or EF
accesses. (Could be used by the OS to reuse
the TC.)

R/W Undefined

Unused 15:2 Must be written as zeros; return zeros on read. 0 0

F 1 Full Bit. This bit indicates that the cell is full. R/W Undefined

E 0 Empty Bit. This bit indicates that the cell is
empty. Writing 1 to this bit also reset FIFOPtr.

R/W Undefined

11.4 Programming Examples
This section provides three C code examples for programming the ITU:
• Configuring the ITC block

• Setting up a semaphore cell

• Using the ITC for semaphores

The code uses the following include files for #defines:

#include <mips/mt.h>

The example code uses the following defines:

// ITC defines not currently in include files
#define ERRCTL_ITC 0x04000000 /* ITC select for cache opts in ErrCtl register (26,0)
 */
#define ITC_BypassView 0x00000000
#define ITC_ControlView 0x00000008
#define ITC_EmptyFullSyncView 0x00000010
#define ITC_EmptyFullTryView 0x00000018
#define ITC_PVSyncView 0x00000020
#define ITC_PVTryView 0x00000028
#define ITC_En 0x00000001
#define ITC_E 0x00000001

// ITC configuration defines
// ITC Block must be aligned on a 512 boundary to allow for View bits
unsigned int ITC_Block[1024] __attribute__((aligned(1024)));
unsigned int *ITC_BlockNC;
unsigned int *ITC_FirstPVCell;
#define ITC_AddrMask 0 // 1K address space
#define ITC_EntryGrain 0 // 128 bytes between Entries (Cells)

// Variables for ITC
unsigned int errctlreg;
unsigned int errctlreg_withITC;
unsigned int ITC_Config_Tag0;
unsigned int ITC_Config_Tag8;
unsigned int ITC_CellTag;
unsigned int *ITC_Cell;

 171

11 Inter-Thread Communication Unit — Revision 01.20

11.4.1 Configuring the ITC Block
This example code shows how to configure the ITC block. The general steps are:
1. Set the cache controller to access the ITC tags.

2. Set the cell size and spacing.

3. Set the ITC block base address.

4. Return the cache controller to access the cache tags.

Set the Cache Control to Address ITC Tags
Use the CACHE instruction to read or write the ITC block tags. First, set the ITC bit in the Error Control
register. This setting directs cache instruction operations to the ITC tags instead of the normal cache tags.
Next, use the CACHE instruction to read or write to the ITC block tags.

// Configure the ITC tags. This is done by using
// cache opts. To set the cache mode for ITC tags
// the ITC bit in the ErrCtl register must be set

errctlreg = mips32_geterrctl();
errctlreg_withITC = errctlreg | ERRCTL_ITC;
mips32_seterrctl(errctlreg_withITC);

Configure the Address Mask Bits and Entry Grain
The address mask sets the size of the ITC cell and the Entry Grain sets the distance between the cells.
Refer to Table 106: ITU AddressMap1 Field Descriptions on page 168 for a detailed description of the
fields.

// configure Number of entries Address mask bits
// and Entry Grain in ITC tag index 8
// Setup the ITC_Config_Tag8 variable with the Address mask and Grain values
 ITC_Config_Tag8 = ((ITC_AddrMask << 10) | ITC_EntryGrain);
// Write it to the CP0 Data Tag Low Register
 mips32_setdtaglo(ITC_Config_Tag8); // write the tag to the CP0 TagLo register
// Inline Assembly to use the cache instruction operation Index Store Tag
// to write tag 1
// NOTE the 8 offset used to write tag 1
 __asm__ volatile
 ("\
 cache 9, 8($0); \
 ehb; \
 "
) ;

Configure the Base Address and Enabling the ITC Block
Configure the ITC tag 0 with the base address of the ITC block and enable the ITC block. Refer to Table
105: ITU AddressMap0 Field Descriptions on page 168 for a detailed description of the fields.

The ITC_Block variable was declared as an array to set aside a memory area for the ITC block. It's starting
address is used as the ITC block's base address (for convenience in this example, you can choose your
own address).

Note: The base address must be a physical address.

kseg0 cacheability is configured via the config0.K0 field (bits[2:0]). To make kseg0 uncached, write the
value 0x2 into those bits.

Note: In the I7200 core, config0.K0 defaults to 0x2 after reset. If a TLB mapping is used, the page needs
to set its "C" attribute (e.g., via EntryLo bits [5:3] to 0x2 (uncached).

If your core is configured to use an MPU, use the address of the ITC_Block directly.

ITC_BlockNC = ITC_Block;

172

11 Inter-Thread Communication Unit — Revision 01.20

If your core is not using an MPU the ITC_Block address should be converted from a virtual address to a
physical address by:
• Stripping the top bit if TLB mapping is used.

• Setting the VA bits [31:29] to 0x4 to access it via kseg0 (e.g., use address range 0x80000000 to
0x9FFFFFFF).

ITC_BlockNC = (unsigned int *) ((unsigned int)ITC_Block & 0x7fffffff);

Next set ITC Tag 0 with the address and enable bits.

// setup the tag variable with the address, and the enable bit
ITC_Config_Tag0 = ((unsigned int) ITC_BlockNC | ITC_En);
// Write it to the CP0 Data Tag Low Register
mips32_setdtaglo(ITC_Config_Tag0);
// Inline assemble to use the cache instruction operation Index Store Tag
// to write the tag 0
// NOTE the 0 offset used to write tag 0
__asm__ volatile
 ("\
 cache 9, 0($0); \
 ehb; \
 "
) ;
mips32_seterrctl(errctlreg); // return ErrCtl to it previous state

11.4.2 Set up a Semaphore Cell
Now that the ITC Block is enabled, the next step is to enable an ITC Cell using an uncached address to
access the cell.

• If your core is configured to use an MPU, the address must be configured to be uncached. Refer to the
MPU chapter for more information on using a region for that function.

• If you are not using an MPU, change the address of the cell array from a kseg0 to kseg1 address by
changing bit 29 of the address.

kseg1 is strictly uncached; kseg0 can be uncached, therefore, it can also be used to access the ITU.

ITC_BlockNC = (unsigned int *) ((unsigned int)ITC_Block | 0x20000000);

Each cell view looks like an offset into the cell. To reset the cell, use the ITC Control View (also known as
the cell tag). Refer to Table 108: Control View Format on page 171 for a detailed description of the fields.

Note: You do not need to use a CACHE operation to access the cell tag; access it directly by its address.

To obtain the address for the control view:

ITC_Cell =(unsigned int *)((unsigned int)ITC_BlockNC | ITC_ControlView);

Next set the Empty bit to initialize the cell for use.

*ITC_Cell = ITC_E;

Finally, increment the ITC cell to allow the first thread to not block. This cell is used as a semaphore; use
the PVSyncView to increment the cell.

ITC_Cell =(unsigned int *)((unsigned int)ITC_BlockNC | ITC_PVSyncView);
*ITC_Cell = 1;

11.4.3 Use the ITC for Semaphores
After completed the previous steps, the cell is ready for use. Read the cell in the code that should be
controlled by the semaphore cell:

ITC_Cell =(unsigned int *)((unsigned int)ITC_BlockNC |ITC_PVSyncView);
ITC = *ITC_Cell;

The read blocks if the cell contains a 0. Execution continues when the cell is incremented.

 173

11 Inter-Thread Communication Unit — Revision 01.20

When the code is finished with the critical section that the semaphore is protecting, write to the cell:

*ITC_Cell = ITC;

Note: All writes to an ITC requires an explicit to memory barrier to complete (e.g., SYNC).

 174

12 Instruction, Data, and Unified Scratch Pad RAM — Revision 01.20

12 Instruction, Data, and Unified Scratch Pad RAM
The I7200 supports the option of adding high-speed local memory blocks, called Scratch Pad RAM (or
SPRAM), when building the core. These blocks provide low-latency storage for critical code or data. SPRAM
access speed is similar to that of locked cache lines, but without the impact on cache performance or
maintenance.

SPRAM memory blocks are accessible by instruction fetches or data reads/writes.. These blocks are
addressed separately from main memory, so it is possible to for the SPRAM addresses to overlap each other
and main memory. There can be only one continuous physical address range for each Instruction or Data
SPRAM block.

USPRAM is an SPRAM structure that is accessible by all MIPS CPU cores in the I7200 SoC. USPRAM access
is shared across Instruction and Data accesses. The latency is longer than caches, but this structure provides
a faster alternative to L2 access or data access between cores when coherency is not needed.

The SPRAM array, like the cache arrays, is indexed with a virtual address and the tag comparison is performed
using a physical address. Because the SPRAM size can be larger than the 4 KB minimum page size, it is
possible to have virtual aliasing in the SPRAM if using a TLB. Virtual aliasing occurs when a single physical
address is accessed via two different virtual addresses that can simultaneously reside in memory. This function
is not handled by hardware, and programmers must be aware of it. One method is to make one TLB entry that
covers the whole SPRAM memory: make the page size for the TLB entry the same size as the SPRAM.

SPRAM blocks can be as small as 4 K and as large as 1 MB. The tags and sizes of all SPRAMs are configured
at build time and are not modifiable by software.

Software must ensure an SPRAM entry has been initialized before it is read to avoid reading spurious data.
Later sections in this chapter provide code examples.

Implementation notes:

• In most systems the BSS section is cleared when the processor is being initialized or a process is first
brought into memory. If you configure your data SPRAM after this clear step to an address that covers the
BSS section, you will need to re-clear the area.

• If the area that the Data SPRAM memory is replacing was already in use and it was cached, first flush and
invalidate any cache lines that correspond to the physical memory being overlaid. Because SPRAM access
supersedes the data cache hit, it is impossible to reference the data cache at the overlaid addresses.

• If you are using a TLB, it is possible to have a virtual address mapped to a cached area and another virtual
address mapped through the SPRAM with both using the same physical memory. In this case, both cache
and SPRAM memory can have updated values with one not seen by the other. Avoid this scenario.

• SPRAM can be mapped to either cached or uncached space. The address decode and comparison for
SPRAM is performed regardless of the cacheability attribute.

12.1 DSPRAM Prediction Buffer
By default, the DSPRAM prediction buffer bit, located at CP0[22] s3 bit[4], is enabled at reset. This allows
the core to monitor and remember addresses that hit the DSPRAM. On subsequent DSPRAM access,
the core will disable the D-cache to converse power. In TLB configurations, this feature does require the
virtually addresses to be mapped contiguously and naturally-aligned to the size of the DSPRAM (software
cannot map two non-contiguous or partial pages to the DSPRAM). If this cannot be done, then software
must disable the prediction capability by clearing the DSPPB_EN bit at CP0[22]s3 bit[4]. Cores configured
with an MPU do not have this restriction.

12.2 SPRAM Examples

 175

12 Instruction, Data, and Unified Scratch Pad RAM — Revision 01.20

The SPRAM configuration size and address information is kept in Tag registers that are read using the
CACHE instruction. There are a few simple steps needed to read the ScratchPad RAM configuration of
your core.

SPRAM Address
The following code shows how to read the SPRAM size and address.
1. Read the CP0 Configuration Register to check for the existence of the SPRAM.

2. Set the SPR bit in the CP0 Error Control Register to direct the CACHE instruction to the SPRAM.

3. Use the CACHE instruction to read the SPRAM tag, which contains the location of the SPRAM blocks.

The code uses macros defined at the end of this chapter and includes the following files from the gcc
toolchain:
• mips/asm.h

• mips/m32c0.h

• mips/regdef.h

• mips/cpu.h

First, read the CP0 Config0 register that contains the Scratchpad existence bits:

Table 109: Config Register (CP0 #16 - Select 0)

31 30 28 27 25 24 23 22 21 20 19 18 17 16 15 14 13 12 10 9 7 6 3 2 0

M K23 KU ISP DSP UDI 0 MDU 0 0 0 BM BE AT AR MT 0 K0

unsigned int my_Config ;

my_Config = mips32_getconfig0();

if ((my_Config >> 23) & 1) {
 // DSPRAM block0 exists
}

if ((my_Config >> 24) & 1) {
 // ISPRAM block0 exists
}

Set the SPR bit in the CP0 Error Control Register so cache operations are directed to the SPRAM
controller:

Table 110: Error Control Register (CP0 #26 - Select 0)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 12 11 4 3 0

PE PO WST SPR 0 ITC LBE WABE 0 L1ECC 0 SE PE 0 PI PD

unsigned int my_errctl, my_errctlS ;
my_errctlS = mips32_geterrctl();
// set the SPR bit:
my_errctl = my_errctlS | 0x10000000; // set bit 28
// Write it back to CP0 Error Control
mips32_seterrctl(my_errctl);

Read the SPRAM tag registers to get the SPRAM address:

Table 111: DTagLo (CP0 #28 - Select 2 D Tags), ITagLo (CP0 #28 - Select 0 I Tags)

tag 31 20 19 12 11 0

0 Physical Base Address

176

12 Instruction, Data, and Unified Scratch Pad RAM — Revision 01.20

Tag 0 contains the physical address bits 12 through 31 of the SPRAM block. These address bits are set to
the default values the core was configured with at build time.

Tag 1 contains the number of 4 K sections of the SPRAM block in bits 12 through 19.

// Read the base address of the SPRAM
unsigned int my_TagLo;
index_load_tag_i (0); // read the SPRAM tag 0 into the I tag lo register
my_TagLo = getitaglo(); // read the I tag lo register into my_TagLo
base_paddr = my_TagLo & 0xfffff000; // extract the SPRAM base address

// Read the SPRAM size
index_load_tag_i (8); // read the SPRAM tag 1 into the I tag lo register
my_TagLo = getitaglo(); // read the I tag lo register into my_TagLo
block_size = my_TagLo; // extract the size of the SPRAM

Enabling the Data, Instruction, and Unified SPRAM
The SPRAMs are enabled by setting bits in the CP0 register 22 Select 3.
• Setting bit 0 enables DSPRAM

• Setting bit 1 enables ISPRAM

• Setting bit 2 enables USPRAM

Using Instruction SPRAM
To put your code into the scratchpad, load the instruction SPRAM block from main memory using the
CACHE instruction, index store Data. The simplest method is to load the code into main memory and
then position the Instruction SPRAM Block directly over it. While the Instruction SPRAM Block is disabled,
use the CACHE instruction to copy the code from main memory to the SPRAM block. Finally, enable the
Instruction SPRAM and it is ready to use.

Note: Using two data tag registers switches the order of the reads from these registers depending on the
endianness.

Using the Data SPRAM
The Data SPRAM block appears to your program as normal physical memory, so you simply need to
enable the block. You do not need to have underlying main memory when you are using the Data SPRAM.

Configuring the Data SPRAM at core build time with a DMA interface makes it efficient as a staging area
for communicating with complex I/O devices. For example, you can implement a push style I/O in which the
device writes incoming data close to the CPU. Another advantage is using Data SPRAM for DMA buffers; it
does not have cache management issues such as flushing and invalidating cache lines.

Using the Unified SPRAM
The Unified SPRAM block is similar to the data SPRAM in that it appears to be a single contiguous piece
of normal memory accessible by any CCA. It is different in that it can be accessed by both data read/writes
and instruction fetches from all cores and DMA.

The USPRAM is configured at build time. Per core access is enabled by the COP0 $22 select 3 bit [2]
within each CPU. The USPRAM design is non-coherent; therefore, to ensure data is visible across all
cores, software must ensure implement a semaphore or synchronizing system between cores.

Note: Unlike the instruction and data SPRAMs, USPRAM cannot be accessed by the CACHE instruction.

12.3 SPRAM Macros
// Use these to access SPRAM configuration tags:
#define Index_Store_Data_I 0x0c // not defined in m32c0.h
#define index_store_data_i(x) \
({ unsigned int X; \
 X=x; \

 177

12 Instruction, Data, and Unified Scratch Pad RAM — Revision 01.20

asm volatile ("cache %0, 0(%1)" : : "i" (Index_Store_Data_I), "r" (X));})

#define setidatahi(x) \
({ unsigned int X; \
 X=x; \
asm volatile ("mtc0 %0, $%1, 1": : "r" (X), "i" (C0_TAGHI));})

#define setidatalo(x) \
({ unsigned int X; \
 X=x; \
asm volatile ("mtc0 %0, $%1, 1": : "r" (X), "i" (C0_TAGLO));})

#define getidatahi() \
({ unsigned int __value; \
asm volatile ("mfc0 %0, $%1, 1" : "=r" (__value) : "i" (C0_TAGHI)); \
__value;})

#define getidatalo() \
({ unsigned int __value; \
asm volatile ("mfc0 %0, $%1, 1" : "=r" (__value) : "i" (C0_TAGLO)); \
__value;})

 178

13 Hardware and Software Initialization — Revision 01.20

13 Hardware and Software Initialization
A I7200 core contains only a minimal amount of hardware initialization and relies on software to fully initialize
the device.

13.1 Hardware-Initialized Processor State
The I7200 core is not fully initialized by hardware reset. Only a minimal subset of the processor state is
cleared. This is enough to bring the core up while running in unmapped and uncached code space. All
other processor state can then be initialized by software. Unlike previous MIPS processors, there is no
distinction between cold and warm resets (or hard and soft resets). SI_Reset is used for both power-up
reset and soft reset.

Coprocessor 0 State
Much of the hardware initialization occurs in Coprocessor 0:

• Random - cleared to maximum value on Reset

• Wired - cleared to 0 on Reset

• StatusBEV - set to 1 on Reset

• StatusTS - cleared to 0 on Reset

• StatusNMI - cleared to 0 on Reset

• StatusERL - set to 1 on Reset

• StatusRP - cleared to 0 on Reset

• CDMMBaseEN - cleared to 0 on Reset

• WatchLoI,R,W - cleared to 0 on Reset

• Config fields related to static inputs - set to input value by Reset

• ConfigK0 - set to 010 (uncached) on Reset

• ConfigKU - set to 010 (uncached) on Reset

• ConfigK23 - set to 010 (uncached) on Reset

• DebugDM-cleared to 0 on Reset (unless EJTAGBOOT option is used to boot into Debug Mode).

• DebugLSNM - cleared to 0 on Reset

• DebugIBusEP - cleared to 0 on Reset

• DebugDBusEP - cleared to 0 on Reset

• DebugIEXI - cleared to 0 on Reset

• DebugSSt - cleared to 0 on Reset

TLB Initialization
Each TLB entry has a hidden state bit, which is set by Reset and is cleared when the TLB entry is written.
This bit disables matches and prevents TLB Shutdown conditions from being generated by the power-up
values in the TLB array (when two or more TLB entries match a single address). This bit is not visible to
software.

 179

13 Hardware and Software Initialization — Revision 01.20

Bus State Machines
All pending bus transactions are aborted and the state machines in the bus interface unit are reset when a
Reset exception is taken.

Statis Configuration Inputs
All static configuration inputs (for example, those defining the bus mode and cache size) should only be
changed during Reset.

Fetch Address
Upon Reset, unless the EJTAGBOOT option is used, the fetch is directed to VA 0xBFC00000 (PA
0x1FC00000). This address is in kseg1, which is unmapped and uncached, so that the TLB and caches do
not require hardware initialization.

13.2 Software-Initialized Processor State
Software is required to initialize parts of the device, as described below.

Register File
The register file powers up in an unknown state with the exception of r0, which is always 0. Initializing the
rest of the register file is not required for proper operation. Good code will generally not read a register
before writing to it, but the boot code can initialize the register file for added safety.

TLB
Because of the hidden bit indicating initialization, the core does not initialize the TLB upon Reset. This is
an implementation-specific feature of the I7200 core and cannot be relied upon if writing generic code for
MIPS processors.

Caches
The cache tag and data arrays power up to an unknown state and are not affected by reset. Every tag in
the cache arrays should be initialized to an invalid state using the CACHE instruction (typically the Index
Invalidate function). This can be a long process, especially because the instruction cache initialization must
run in an uncached address region.

Coprocessor 0 State
Miscellaneous COP0 states need to be initialized before exiting the boot code. There are various
exceptions that are blocked by ERL=1 or EXL=1, and which are not cleared by Reset. These can be
cleared to avoid taking spurious exceptions when leaving the boot code.

• Cause: WP (Watch Pending), and SW0 and SW1 (Software Interrupts) should be cleared.

• Config: K0 shouldbe set to the desired Cache Coherency Algorithm (CCA) prior to accessing kseg0.

• Count: Should be set to a known value if timer tnterrupts are used.

• Compare: Should be set to a known value if timer tnterrupts are used. Note that the write to Compare
will also clear any pending timer interrupts, so Count should be set before Compare to avoid any
unexpected interrupts.

• Status: Desired state of the device should be set.

• Other COP0 state: Other registers should be written before they are read. Some registers are not
explicitly writeable, and are only updated as a by-product of instruction execution or a taken exception.
Uninitialized bits should be masked off after reading these registers.

180

13 Hardware and Software Initialization — Revision 01.20

13.3 Boot and CMP Bringup
After the system is reset and released, all cores configured in hardware to power up will execute their
boot sequence. Typically, CPU0 powers up, while all other CPUs are configured to remain powered down.
Alternatively, all CPUs can be hardware configured to remain powered down to be awakened through a
hardware signal connected to SOC-specific logic.

After system reset, all caches are in an unknown state and must be initialized. It is advisable for core0 to
initialize the L2 cache prior to powering up the other cores, but this is not required if other synchronization
methods are utilized. For L1 caches, this is expected to be done using IndexStTag ops running on the
same CPU. Prior to the data cache being initialized, processing an intervention would cause unpredictable
results, potentially corrupting main memory with random data. Thus, the system starts with all of the cores
outside the coherence domain until explicitly enabled by software.
Core0:
Initialize cop0 state
Initialize L2 Cache
Initialize GCR state
Startup other cores if needed
CoreN:
Initialize L1 Caches
Enable Coherence
Switch to coherent CCA

13.4 Hazard Barrier Instructions
When privileged CP0 instructions change the machine state, unexpected behavior can occur if an
instruction is deferred out of its normal instruction sequence. However, that behavior can happen because
the relevant control register only gets written down the pipeline, or because the changes it makes are
sensed by other instructions early in their pipeline sequence. This situation is called a CP0 hazard.

Traditionally, MIPS CPUs the kernel/low-level software engineer had to design sequences that were
guaranteed to run correctly, usually by padding the dangerous operation with enough NOP instructions. To
help manage pipeline hazards, the I7200 core implements explicit hazard barrier instructions. If a hazard
barrier instruction is executed between the instruction that makes the change (the producer) and the
instruction that is sensitive to it (the consumer), the change is seen as complete. Hazards can appear when
the producer affects the consumer's instruction fetch (instruction hazard) or it can affect the operation of the
consuming instruction (execution hazard).

The I7200 core has these hazard barriers:
• EHB deals only with execution hazards

• ERET, ERETNC, and JALRC.HB are barriers to both kinds of hazard

In most implementations, the strong hazard barrier instructions are quite costly, often discarding most or
all of the pipeline contents. They should not be used indiscriminately. For efficiency you should use the
weaker EHB where it is sufficient. Because some implementations work by holding up execution of all
instructions after the barrier, it is preferable to place the barrier just before the consumer, not just after the
producer.

The following tables list the execution hazards and the instruction hazards for the I7200 core.

Execution Hazards
Execution hazards are those created by the execution of one instruction, and seen by the execution of
another instruction. The following table lists possible execution hazards.

 181

13 Hardware and Software Initialization — Revision 01.20

Table 112: Execution Hazards

Producer → Consumer Hazard On

TLBWR, TLBWI , TLBINV,
TLBINVF

→ Load/store using new TLB entry TLB entry

MTC0 → Load/store affected by new state WatchHi, WatchLo

MTC0 → MFC0 Any CP0 register

MTC0 → EI, DI Status

MTC0 → RDHWR $3 Count

MTC0 → Coprocessor instruction execution
depends on the new value of
StatusCU

StatusCU

MTC0 → ERET EPC,DEPC, ErrorEPC

MTC0 → ERET Status

EI, DI → Interrupted instruction StatusIE

MTC0 → Interrupted instruction Status

MTC0 → User-defined instruction StatusERL, StatusEXL

MTC0 → Interrupted instruction StatusIM (CauseIP)

TLBR → MFC0 EntryHi, EntryLo0, EntryLo1,
PageMask

TLBP → MFC0 Index

MTC0 → RDPGPR, WRPGPR SRSCtlPSS

MTC0 → Instruction not seeing a Timer
Interrupt

Compare update that clears Timer
Interrupt

MTC0 → Instruction affected by change Any other CP0 register

CACHE → MFC0 TagHi, TagLo, DataHi, DataLo

MTC0 → SC LLAddr

LL → MFC0 LLAddr

Execution Hazards on Memory-Mapped Register
Memory mapped control registers (such as MPU_Config that resides in the CDMM space, or the IBC
register in the dseg space) are accessed with uncached SW and LW instructions rather than an MTC0
instruction. To ensure these instructions take effect immediately, a SYNC instruction is required to push the
write-data out of the pipeline and internal buffers.

Instruction Hazards
Instruction hazards are those created by the execution of one instruction, and seen by the instruction fetch
of another instruction. The following table lists the instruction hazards. Because the fetch unit is decoupled
from the execution unit, these hazards are rather large. The use of a hazard barrier instructions is required
for reliable clearing of instruction hazards.

182

13 Hardware and Software Initialization — Revision 01.20

Table 113: Execution Hazards

Producer → Consumer Hazard On

TLBWR, TLBWI, TLBINV,
TLBINVF

→ Instruction fetch using new TLB
entry

TLB entry

MTC0 → Instruction fetch seeing the new
value including:
• Change to ERL followed by an

instruction fetch from the useg
segment

• Change to ERL or EXL
followed by a Watch exception

Status

MTC0 → Instruction fetch seeing the new
value

EntryHiASID

MTC0 → Instruction fetch seeing the new
value

WatchHi, WatchLo

Instruction stream write via
CACHE

→ Instruction fetch seeing the new
instruction stream

Cache entries

Instruction stream write via store → Instruction fetch seeing the new
instruction stream

Cache entries

 183

14 Multithreading Overview — Revision 01.20

14 Multithreading Overview
Multithreading is the ability of a single core in the multi-core I7200 to execute multiple processes or threads
concurrently. Multithreading can increase the overall core efficiency. The operating system manages the thread
distribution, and is responsible for ensuring that all threads can run simultaneously without interfering with each
other.

The I7200 MPS implements the MIPS® Multi-Threading (MT) Application Specific Extension (ASE). The MT
ASE provides hardware support for multithreading software applications using Virtual Processing Elements
(VPEs) and Thread Contexts (TCs). With multithreading, an I7200 core can execute software applications in
fewer cycles than on a typical single-threaded core.

14.1 Thread Context Resource Allocation
Resources are allocated at IP configuration time depending on the number of cores, VPEs, and TCs in the
system. The resources common to the core level are:

• Pipeline

• Instruction Fetch Unit

• L1 Caches

• Load Store unit

• Multiply-Divide unit

• Arithmetic logic unit

• Memory

• CP0 registers that are shared by all VPEs

• Up to three VPEs per core

In addition to the core, each VPE has its own:

• TLB, if configured

• Exception and interrupt logic

• Performance counters

• All CP0 registers that are not common to the core are duplicated for each VPE. In addition to the
Standard MIPS CP0 registers additional registers are defined per-VPE, and are common for all TCs
within that VPE.

A core can have up to 9 TCs; each TC is associated with a specific VPE. In addition to the VPE, each TC
has its own:
• General-purpose registers (GPRs)

• Internal program counter

• CP0 registers

184

14 Multithreading Overview — Revision 01.20

The following figure shows the maximum number of cores, virtual processors, and thread contexts the
I7200 supports.

Figure 37: Maximum Number of VPEs and TCs in the I7200

VPE0
TC0

TC1

TC2

TC3

TC4

TC5

TC6

TC7

TC8

Core 0

VPE1

VPE2

VPE0
TC0

TC1

TC2

TC3

TC4

TC5

TC6

TC7

TC8

Core 1

VPE1

VPE2

VPE0
TC0

TC1

TC2

TC3

TC4

TC5

TC6

TC7

TC8

Core 2

VPE1

VPE2

VPE0
TC0

TC1

TC2

TC3

TC4

TC5

TC6

TC7

TC8

Core 3

VPE1

VPE2

14.2.1 Starting Thread Execution
Threads can be directly created in user mode with the FORK instruction. The FORK instruction takes three
operands:
• The instruction address at which the new thread will begin execution.

• An arbitrary register value to be passed to the new thread, typically a pointer to a block of thread-
specific storage.

• An output parameter, which is the register in the new thread’s TC that will receive that second input
operand value.

14.2.2 Multithreading Software Design Considerations and the FORK Instruction
Software should consider the following design considerations.

No Implicit Context Copy
Some high-level multithreading software paradigms require that each new thread receive a copy of the
parent full register set. Others do not. A MIPS32 user-mode thread context consists of 31 GPRs (register 0
always being 0), the Hi/Lo or ACX/Hi/Lo accumulator, and some coprocessor state. The FORK instruction
does not do a copy of the parent processes registers; instead it passes a single GPR value parameter to
the newly spawned thread. If the computation requires more than a single value, this value can be a pointer
to a context block in memory that contains register and other values needed by the thread computation. A
FORK also implicitly propagates some privileged state, such as the contents of the ASID register, but the
objective is to minimize the payload of a FORK operation. Minimizing the payload minimizes the hardware
implementation cost, but also anticipates multicore remote FORKs, in which information is transmitted
between processing elements.

No Value Provided to Forking Thread
Some high-level multithreading paradigms require that thread creation return a value to the parent thread
performing the FORK operation. This value is use as a handle or tag for future operations that may
reference the thread. The FORK instruction does not do this because:

• It would require a register-file write beyond the write of the GPR value parameter to the register file of
the new thread, which creates an undesirable constraint on the design of multithreaded register files.

186

14 Multithreading Overview — Revision 01.20

• It creates a name-space problem. In the course of its lifetime, the newly created software thread may
end up executing on different register sets of the same CPU due to context switching, and it may even
be migrated to some other processing element. Having hardware provide, as an output of the FORK
instruction, a system-unique identifier that would follow each new thread, would be possible, but too
complex to impose on small, embedded cores.

Where traceability is required, it can be accomplished using software-based memory interactions.

Absolute Virtual Thread Starting Address
The FORK instruction takes as an input operand a register value that is taken to be the starting instruction
fetch address for the new thread.

14.2.3 Thread Overflow Exception
Issuing a FORK instruction when there are no free, dynamically allocatable TCs available on the VPE
causes a thread overflow exception that system software can use to virtualize threads. A program can thus
create and use a larger number of software threads than the available compliment of TCs, as long as the
OS provides higher level scheduling to swap them in and out.

Issuing a FORK instruction when multi-TC scheduling is inhibited on the issuing VPE does not necessarily
result in a failure or exception. As long as a TC can be successfully allocated, it is set up to run by the
FORK operation and begins execution once TC scheduling is enabled.

14.2.4 Thread Suspension Using the YIELD Instruction
The YIELD instruction suspends thread execution. It takes as an input operand a descriptor of the
circumstances under which the issuing thread should be resumed. If the operand has a value of zero, there
are no circumstances under which the thread will resume, and it is de-allocated so that the associated TC
may be re-used.

Negative descriptor values are reserved by MIPS for architecturally defined rescheduling conditions. A
value of -1 requests that the YIELDing thread be rescheduled without waiting for any specific condition, but
allowing other threads to play through, according to the implemented thread scheduling scheme. A value of
-2 samples the YIELD qualifier inputs to the core without any rescheduling of the thread. Positive descriptor
values represent a vector of up to 31 independent YIELD Qualifier bits, which are hardware inputs to the
processor. This option is only available if a yield manager is configured.

The MIPS MT ASE provides mechanisms for an operating system to intercept and emulate YIELD
operations. If a per-VPE enable is set, rescheduling YIELDs trap to the operating system with a designated
exception code and subcode identifying a YIELD scheduler intercept. The operating system can:
1. Evaluate the current YIELD qualifier input state

2. Check it against the contents of the register specified by the trapping YIELD instruction

3. Make its own determination whether the YQ input values (or some synthetic value) should be placed in
the YIELD’s destination register

4. Restart the TC at the instruction following the YIELD, or decide whether the TC contents should be
swapped to memory and replaced with the context of another thread of execution

Each TC has a status bit that is set whenever an instruction is completed for that TC, outside of low-level
exception handlers. This bit has multiple software uses, and it is further used by hardware to enable the
YIELD scheduler intercept exception. An operating system that wishes to allow a TC to resume and remain
blocked on a YIELD after handling a YIELD scheduler intercept exception can clear this DT (Dirty Thread)
bit before restarting the TC on the YIELD. That particular TC remains blocked until the YIELD qualifiers are
satisfied or until some other OS intervention takes place. If the YIELD completes due to the qualifiers being
satisfied, the DT bit is set, and the next blocking YIELD issued by that thread traps if the YIELD scheduler
intercept exceptions are still enabled.

14.2.5 Additional MT ASE Instructions

 187

14 Multithreading Overview — Revision 01.20

While user-mode multithreading is based on the FORK and YIELD primitives, the I7200 MT ASE also
includes some privileged instructions to help manage thread and VPE resources.

• MTTR is a privileged, COP0 instruction that moves information from a register of the issuing thread to a
register of another thread context on the same processor.

• MFTR is a privileged, COP0 instruction that moves information from a register of another thread context
on the same processor to a register of the issuing thread.

• EMT is a privileged, COP0 instruction that atomically enables multithreaded issue on a VPE.

• EVPE is a privileged, COP0 instruction that atomically enables multi-VPE issue on a core with multiple
VPEs enabled.

• DMT is a privileged, COP0 instruction that atomically disables multithreaded issue on a VPE.

• DVPE is a privileged, COP0 instruction that atomically disables multi-VPE issue on a core with multiple
VPEs enabled.

Note: EMT, DMT, EVPE, and DVPE are all instances of the MFMC0 instruction.

14.3 Multithreading CP0 Registers
Certain privileged resources are required to manage the multithreading capabilities of a VPE.
Multithreading CP0 registers are instantiated at the core level, the VPE level, and the TC level.

14.3.1 Per-Core Multithreading Registers
The following registers are instantiated at the core level:
• MVPControl register: Contains control bits for managing multi-VPE processors.

• MVPConf0 and optional MVPConf1 registers: Contain information about global multithreaded processor
resources that can be configured at boot time and bound to different VPEs.

14.3.2 Per-VPE Multithreading Registers
The following registers are instantiated at the VPE level:

• VPEControl register: Contains information about the configuration of threads within a VPE.

• VPEConf0 and VPEConf1 registers: Contain per-VPE information about the multithreading resources
available to theVPE.

• YQMask register: Allows certain YIELD qualifier bits to be masked, so that an attempt to suspend
execution pending that state results in an exception.

• VPESchedule register: Allows for the hardware scheduling algorithms of a processor to be manipulated
to guarantee some quality of service to VPEs with hard real-time requirements.

• SRSConf0 - SRSConf4 registers: Allow for run-time binding of TCs to Shadow Register Sets.

14.3.3 Per-TC Multithreading Registers
The following registers are defined to be per-TC:

• TCStatus register: Contains privileged resource information per-thread, such as the kernel/user state
of the thread, or whether it has access to a coprocessor.

• TCBind register: Defines a TC's binding to a VPE.

• TCRestart register: Contains the restart fetch and execution address of a TC.

• TCHalt register: Allows a TC to be put into or taken out of a halted state with a single register write.

• TCContext register: Storage register implemented per-thread, which allows the OS to have instant
access to a value, typically a memory pointer such as a kernel stack pointer, that is unique per-thread.

188

14 Multithreading Overview — Revision 01.20

14.4 Thread-Level Exception Processing
By definition, parallelism at the VPE level introduces nothing new in the handling of exceptions for single-
threaded VPEs within a multi-VPE core. In the explicit, fine-grained model, however, multiple threads of
execution with multiple hardware thread contexts share common system coprocessor resources. This has
a number of implications for hardware and software.

Because there is only one Cause register to contain the reason for an exception, a single VPE cannot
manage concurrent exceptions. When a synchronous exception is provoked by a thread, as in the case of
a TLB miss or a floating-point exception22, the MIPS32 architecture stipulates that the EXL or ERL bits of
the Status register be set, which blocks interrupts and further general exceptions from being taken.

In the MIPS MT ASE, the setting of EXL/ERL also prevents the scheduling of other threads until it is
cleared by the exception handler. Short exception handling sequences like TLB miss handlers can
reasonably be coded, and re-enable multithreading implicitly with the clearing of EXL by the ERET
instruction.

More complex exception handling sequences, such as OS system calls, may explicitly re-enable the
concurrent execution of non-privileged application threads by clearing EXL once the the OS has acquired
and saved the Cause information.

For a synchronous exception, the TC associated with the instruction stream causing the exception is the
one that is associated with the exception:
• If the exception is not bound to a shadow register set, the associated TC is used to execute the

exception handler.

• If a shadow register set is used, the associated TC is used as the previous shadow set.

Asynchronous exceptions, such as interrupts, can be associated with any available activated TC, with the
restriction that TCs used by real-time service threads may be designated as exempt from use by interrupt
service routines by setting a the IXMT per-thread control bit.

If all activated TCs are explicitly blocked via YIELD instructions or uncompleted loads/stores of gating
storage locations, asynchronous exceptions, including debug exceptions, must be associated with such
a blocked TC. The associated handlers are executed using the previously blocked context, aborting the
YIELD or load/store. The VPE resumes execution on an ERET by re-fetching and re-executing the YIELD
or load/store. An aborted gating storage load or store must leave the state of the storage location as it
would have been had the instruction never been issued.

Debug exceptions are special in several regards with respect to MIPS MT. Like other exceptions, they
execute within the context of a specific VPE, but whereas the setting of EXL or ERL by a normal exception
inhibits thread scheduling only within the affected VPE, debug mode execution inhibits thread scheduling
across all core VPEs. While other asynchronous exceptions, such as interrupts, require a TC that is
activated and not halted (though it may have been blocked) to process the exception, an asynchronous
debug exception, such as that caused by the assertion of a DINT signal by a probe, can be serviced by
any TC bound to the targeted VPE, regardless of its halt or activation state. This makes it possible for
debuggers to recover from otherwise completely fatal OS errors, such as halting all TCs.

Note: For further details of debug extensions (such as synchronous halt for multiple VPEs) refer to the
MIPS OCI 32-Bit Debug Specification.

14.5 Fine-Grained Multithreading
Finer-grained multithreading can exploit parallelism at levels that cannot be efficiently addressed by OS-
level multithreading. The MT ASE implemented by the I7200 core allows threads of execution to be created
and destroyed very inexpensively by user-mode code. This requires that the applications or underlying
libraries be explicitly built or coded to use the new instructions, and also requires the appropriate OS
support.

22 The I7200 core does not support the FPU.

 189

14 Multithreading Overview — Revision 01.20

Fine-grained multithreading in the I7200 core is implemented as an execution model that allows multiple
threads to exist within the context of one CPU. Threads share some CPU resources but are able to
execute independently.

Each thread is scheduled by the policy manager this is a way of controlling the priority of each thread.

Dedicated Register Set
Each thread has its own set of general-purpose registers. This enables each stage of a multithreaded
pipeline to contain instructions from different threads so that execution of those instructions a effects only
the registers of the thread the instruction is from.

The CPU scheduling through the policy manager takes advantage of stalls in the CPU pipeline such as a
cache miss.

Automatic Fine-Grained Multithreading
Automatic parallelization algorithms can be employed in compilers to generate multithreaded code. This
technique is the ultimate means by which a single C or Fortran program can be accelerated in terms of
execution clock time.

The necessary compiler techniques exist in the research and high-performance computing communities.
They would need to be adapted to MIPS and used in conjunction with the OS support described above for
explicitly fine-grained multithreading.

Operating system support for the fine-grained, FORK/YIELD parallelism of the MT ASE should include:

• Context switch code that dynamically checks the number of threads to be saved and restored each time
a user task is switched.

• Fault handling code for thread exceptions, which occur when there is an underflow or overflow of the
number of available physical TCs.

• Allocation and memory management code for ITC storage, if present, as special memory.

If threads at runtime without OS intervention are to be able to take nested exceptions, it is anticipated
that the Thread-Context register value of each TC is unique. The OS start-up code would assign context
storage for each TC on a processor, and insert a pointer to it into that thread’s Thread Context register prior
to that thread’s being made available for FORK allocation.

14.6 Operating System Support
To provide the most optimum implementation of multithreading, system software should contains the
features listed in the following subsections.

14.6.1 Thread Virtualization and Hybrid Scheduling
If more software threads are active in a system than there are TCs available in a MIPS MT VPE, it is
necessary to impose a layer of software scheduling on top of the hardware thread scheduling policy of the
processor. MIPS MT contains architectural hooks to support this thread virtualization.

Executing a FORK instruction when no dynamically allocatable TCs are free to accept the new instruction
stream causes a thread overflow exception. This exception allows an operating system to detect the
case of more software than hardware threads in systems where user-mode thread creation is allowed.
If software threads are created only by the OS, the OS can track the available resources without an
exception.

As long as the number of software threads does not exceed the TC resources available, it is of no
consequence from the standpoint of system performance whether a TC remains blocked on a qualified
YIELD or a gating storage access. However, when TCs are saturated, it becomes necessary to multiplex
the software threads across the available TCs.

190

14 Multithreading Overview — Revision 01.20

This can be achieved using simple scheduling algorithms that time-slice threads, regardless of whether
or not they are making forward progress. For high efficiency, it is highly desirable to use blockages as an
opportunity to schedule other software threads. The MIPS MT ASE provides the option for a VPE to take
an exception whenever a YIELD could cause a rescheduling or whenever a gating storage access blocks.

If blockages will generally be of a short duration, generating exceptions on each blockage may not be
desirable; it may be better to allow TCs to be blocked for some period of time before swapping out their
contents. An operating system can do this by periodically sampling and clearing the dirty bit associated
with each TC, which is set whenever the TC state is modified by instruction execution. If the dirty bit
remains clear after a sample interval, it may be deduced that the TC has been blocked for the full interval.

14.6.2 Software Security
If dynamic FORK/YIELD thread creation and resource allocation is in use simultaneously in different
security domains, i.e., by multiple applications or by both an OS and an application, there can be a risk
of information leakage in the form of register values inherited by an application. It is the responsibility of a
secure operating system to manage this risk.

The MIPS MT ASE provides one simple mechanism to facilitate this task; a dirty bit associated with each
TC can be cleared by software and is set whenever the context is modified. An OS can initialize all TCs to
a known clean state, and clear all associated dirty bits, prior to scheduling a task. On a task switch, dirty
TCs must be scrubbed to the clean state before another task can be allowed to allocate and use them.

If a secure operating system wishes to make use of dynamic thread creation and allocation for privileged
service threads, the associated TCs must be scrubbed before they are freed for potential use by
applications.

The MIPS MT ASE provides no mechanisms to guarantee that two independent, untrusted tasks running
concurrently on the same VPE and executing FORK and YIELD instructions, will not exchange TC storage,
and thus register values. As such, programs that cannot trust one another should be run on distinct VPE’s.

14.6.3 Manipulating TC Dynamic Allocation Properties
Each TC has an associated DA bit, which makes it available for dynamic allocation by FORK instructions.
The interactions of FORK and YIELD with the set of DA bits makes possible several TC management
algorithms.

Interrupt-exempt real-time threads may have the DA bit of their associated TC cleared so that a YIELD
0 of the last dynamically allocated thread causes an underflow thread exception on the YIELDing thread
without interfering with the realtime thread execution and without leaving the processor in a state where no
interrupt-capable TCs are active.

In response to an overflow thread exception on a FORK, where no more DA TCs are available, the OS
can, after having saved a copy of the previous values, clear the DA bits of all TCs, so that the next YIELD
0 will cause an underflow thread exception that can be used by the OS to restore DA bits and schedule a
replay of the failed FORK.

14.6.4 Virtual Multiprocessor
Most mainstream operating systems implement some form of symmetric multiprocessing (SMP). Several
Microsoft operating systems support SMP platforms, as does Linux. Multithreaded applications exist that
exploit the parallelism of such platforms, using heavyweight threads provided by the operating system. The
MIPS MT ASE is designed to provide maximum leverage to this technology.

To applications software, a multithreaded processor configured as two single-threaded VPEs is
indistinguishable from a 2-way SMP multiprocessor. The operating system would have no need to use any
of the new instructions or privileged resources defined by the ASE.

Each MIPS MT TC has its own interrupt exemption bit and its own MMU address space identifier (ASID),
which allows operating systems to be modified or written to use a symmetric multi-TC (SMTC) model.
In this model each TC is treated as an independent processor. Because multiple TCs may share the
privileged resources of a single VPE, an SMTC operating system requires additional logic and complexity

 191

14 Multithreading Overview — Revision 01.20

to coordinate the use of the shared resources. However, the SMTC model allows SMP-like concurrency up
to the limit of available TCs.

14.6.5 Master and Slave VPEs
One or more VPEs on a processor may power-up as a master VPE, indicated by the MVP field of
the VPConf0 register. A master VPE can access the registers of other VPEs by using MTTR/MFTR
instructions, and can, via the DVPE instruction, suspend all other VPEs in a processor.

This master/slave model allows a multi-tasking master application processor VPE running an operating
system such as Linux to dispatch real-time processing tasks on another VPE on behalf of various
applications. While this could be done using an SMP paradigm, handing work off from one OS to another,
MIPS MT also allows it to be done more directly.

A master VPE can take control of another VPE of the same processor at any time. Once a DVPE
instruction has been issued by the master VPE:
1. The slave VPEs CP0 privileged resource state can be set up as needed using MTTR instructions

targeting TCs that are bound to the slave VPE.

2. The necessary instructions and data can be set up in memory visible to the slave VPE.

3. One or more TCs of the slave VPE can be initialized using MTTR instructions to set up their TCRestart
addresses (and their GPR register values, if appropriate).

4. The slave VPE can be dispatched to begin execution using the configured TCs by the master VPE
executing an EVPE instruction.

14.7 Programming Example: Starting a Thread
This section provides C and Assembly code examples that show how to start a new thread executing.

1. Turn on virtual processor configuration and turn off threading.

2. Set target TC for next step.

3. Halt thread.

4. Bind TC to VPE.

5. Set stack pointer.

6. Set TC starting address.

7. Unhalt thread.

8. Turn off virtual processor control and turn on threading.

The code uses the following include files for #defines:

#include <mips/mt.h>

#include <mips/cpu.h>

Note: Register descriptions only cover the effective fields; there may be more fields in the register.

14.7.1 Turn on Virtual Processor Configuration and Disable Virtual Processing
First, the code need puts the processor into a mode in which it can use the CP0 registers to configure the
threads to run.

The MVPControl register has 2 fields: VPC and EVP. Setting the VPC field allows write to registers that
normally are not writable on a single core MIPS processor. The EVP field is cleared to disable all multi-
processing to configure threads.

192

14 Multithreading Overview — Revision 01.20

Table 114: MVPControl Register

Fields
Name Bits

MVPControl - CP0 #0-Sel1 Read/Write Reset State

VPC 1 VPE Configuration State. If set, allows writing to
normally read-only configuration register fields
on conventional MIPS32 CPUs.

R/W 0

EVP 0 Enable Virtual Processors. If set, execute
instructions for all threads on activated VPEs.
If cleared, execute instructions only for thread
which is running when cleared.

R/W 0

mips32_setmvpcontrol((mips32_getmvpcontrol() & ~MVPCONTROL_EVP) | MVPCONTROL_VPC);

Assembly code:
mfc0 t0,c0_mvpcontrol
li t1 2 // load the value for the combined VPC and EVP fields
ins t0, t1, 0, 2 // insert VPC and EVP fields into MVPControl register value
mtc0 t0,c0_mvpcontrol
ehb

14.7.2 Set Target TC
Assuming the thread on which to execute is thread 0, configure the target TC using the TargTC field in the
VPEControl register so thread 1 can be configured.

Table 115: VPEControl Register

Fields
Name Bits

VPEControl - CP0 #1-Sel1 Read/Write Reset State

TargTC 7-0 Target TC number to be used on MTTR and
MFTR instructions.

R/W 0

mips32_mt_settarget(TC1);

Assembly code:
mfc0 t0,c0_vpecontrol // read the VPEControl Register
li t1, 1 // load target TC number
ins t0,t1,0, 8 // insert TC number into VPEControl register value
mtc0 t0,c0_vpecontrol // write new value to VPEControl register
ehb // ensure write has completed before continuing

The MTTR (move to thread register instruction) and the MFTR (move from thread register instruction) are
directed to thread 1.

14.7.3 Halt Target TC
Before continuing, the target thread needs to be halted. Otherwise, the changes being made will be
unpredictable. To ensure thread 1 is halted before configuring it, set the H field in the thread’s TCHalt
register.

Table 116: TCHalt Register

Fields
Name Bits

TCHalt - CP0 #2-Sel4 Read/Write Reset State

H 0 Thread halted. If set thread is halted and cannot
be allocated, activated, or scheduled.

R/W 1

mips32_mt_settchalt(TCHALT_H);

 193

14 Multithreading Overview — Revision 01.20

Assembly code:
li t0,1 // load the H field
mttc0 t0,c0_tchalt // write the value to the TCHalt register
ehb // ensure write has completed before continuing

14.7.4 Bind TC to VPE
The TC needs to be bound to a VPE. The TCBind register controls the affiliation of TC to VPE.

Table 117: TCBind Register

Fields
Name Bits

TCBind - CP0 #2-Sel2 Read/Write Reset State

CurVPE 3 - 0 ID number of the VPE to which the TC is bound. R/W 0

mips32_mt_settcbind (VPE0);

Assembly code:
mttc0 zero,c0_tcbind // write the value to the TCBind register
ehb // ensure write has completed before continuing

14.7.5 Setting the Target TC's Stack and Global Pointers
Each thread must have its own stack pointer. Threads can share the global pointer so the GP register just
needs to be copied from the executing thread.

unsigned int TC1_stack[4096] __attribute__((aligned(16)));
unsigned int TC1_stack_top = (unsigned int)TC1_stack + 4080;

// set stack pointer
mips32_mt_setsp(TC1_stack_top);

Assembly code:
// NOTE: replace TC1_stack_top with th address of your stack top for target TC
li t0, TC1_stack_top // defined address TC1_stack_top
mttgpr t0,sp // write target TC stack pointer

// Set global pointer
mips32_mt_setgp(&_gp);

Assembly code:
mttgpr gp,gp // move gp from gp of current thread

14.7.6 Setting Starting Function Address
Once the target TC is unhalted and multi-threading is enabled, the CPU fetches the next instruction for the
target TC from the target TC’s TCRestart Register. The TCRestart Register needs to be loaded with the
address of its starting function. In this example startTC1 is the starting function.

Table 118: TCRestart Register

Fields
Name Bits

TCRestart - CP0 #2-Sel3 Read/Write Reset State

Restart
address

31 - 0 Address at which execution is started for the TC. R/W 0

mips32_mt_settcrestart(startTC1);

Assembly code
// NOTE: replace _startTC1 with the address of your function
li t0, _startTC1 // load starting address using function lable
mttc0 t0,c0_tcrestart // write address to TCRestart register
ehb // ensure write has completed before continuing

194

14 Multithreading Overview — Revision 01.20

14.7.7 Activate the TC and Make It Dynamically Allocatable
Setting the A field in the TCStatus register activates the thread o the processor knows to fetch instructions
for it. The thread also needs to be dynamically allocatable to make it available for use with FORK and
YIELD instructions using the TCStatus register. To active the thread, set the A field (activated) in the
TCStatus register.

Note: Even though this exaqmple does not use the FORK instruction, the code might use the Yield
instruction later, therefore, dynamic thread allocation must be enabled by setting the DA field.

Table 119: TCStatus Register

Fields
Name Bits

TCStatus - CP0 #2-Sel1 Read/Write Reset State

A 13 Activated. If set run instructions for this TC. Also
set by FORK and cleared by YIELD $0.

R/W 1

DA 15 Dynamic allocation: If set, the TC can be
allocated by FORK or de-allocated by YIELD.

R/W 0

mips32_mt_settcstatus(mips32_mt_gettcstatus() | (TCSTATUS_A | TCSTATUS_DA));

Assembly code:
mftc0 v0,c0_tcstatus // read the TCStatus register
ori v0,v0,0xa000 // or in the A and AD bits
mttc0 v0,c0_tcstatus // write the TCStatus register
ehb // ensure write has completed before continuing

14.7.8 Unhalt the TC
The last step in configuring the TC is to un-halt it so the TC can be scheduled and instructions can be
fetched once multi-threading is enabled. Clearing the H bit in the TCHalt register un-halts the thread. Refer
to Table 116: TCHalt Register on page 193 for a detailed description of the TCHalt H bit.

mips32_mt_settchalt(0);

Assembly code:
mttc0 zero,c0_tchalt // move the value in the zero register to TCHalt

14.7.9 Enable Threading
Enable threading on the VPE by setting the TE bit in the VPEControl register.

Table 120: VPEControl Register

Fields
Name Bits

VPEControl - CP0 #1-Sel1 Read/Write Reset State

TE 15 Thread enable. If cleared only one TC may
execute on the VPE.

R/W 0

mips32_mt_setvpecontrol(mips32_mt_getvpecontrol() | VPECONTROL_TE);

Assembly code:
mftc0 v0,c0_vpecontrol // read in the VPEControl register
ori v0,v0,0x8000 // set the TE bit
mttc0 v0,c0_vpecontrol // write the VPEControl register
ehb // ensure write has completed before continuing

14.7.10 Turn Off Configuration Mode and Enable Virtual Processing

 195

14 Multithreading Overview — Revision 01.20

The last step before the newly created thread starts execution is to leave configuration mode and enable
virtual processing using the MVPControl register (the reverse procedure that started the process). Refer to
Table 114: MVPControl Register on page 193 for detailed information on the fields.

mips32_setmvpcontrol((mips32_getmvpcontrol() & ~MVPCONTROL_VPC) | MVPCONTROL_EVP);

Assembly code:
mfc0 t0,c0_mvpcontrol // read MVPControl
li t1 1 // load the value for the combined VPC and EVP fields
ins t0, t1, 0, 2 // insert VPC and EVP fields into MVPControl register value
mtc0 t0,c0_mvpcontrol // write new value to the MVPControl register
ehb // ensure write has completed before continuing

 196

15 Instruction Delay Cycles — Revision 01.20

15 Instruction Delay Cycles
This chapter provides instruction delay cycles for producer and consumer instruction types.

The delay cycle is the minimum time between the time when an instruction issues and the time that a
subsequent dependent instruction may issue. For example, and ADD instruction has a latency of 1 cycle.
Consider the following code sequence:
ADD r3, r1, r2
ADD r5, r4, r3

In this example the second ADD instruction is dependent on the value placed into r3 by the first ADD instruction.
It may issue one cycle after the first ADD instruction issues.

15.1 Instruction Types

15.1.1 Producers
• Loads: LB[U12], LB[16], LB[GP], LB[S9], LBU[U12], LBU[16], LBU[GP], LBU[S9], LBUX, LBX, LH[U12],

LH[16], LH[GP], LH[S9], LHU[U12], LHU[16], LHU[GP], LHU[S9], LHUX, LHUXS, LHX, LHXS, LL,
LLE, LW[U12], LW[16], LW[4X4], LW[GP16], LW[GP], LW[S9], LW[SP], LWM, LWPC, LWX, LWXS[32],
LWXS[16], UALH, UALWM, RESTORE[32], RESTORE.JRC[16], RESTORE.JRC[32]

• Arithmetic: ADD, ADDIU[32], ADDIU[48], ADDIU[GP48], ADDIU[GP.B], ADDIU[GP.W], ADDIU[R1.SP],
ADDIU[R2], ADDIU[RS5], ADDIU[NEG], ADDIUPC[32], ADDIUPC[48], ADDU[32], ADDU[16],
ADDU[4X4], ALU20IPC[GP], AND[32], AND[16], ANDI[32], ANDI[16], AU20IPC, CLO, CLZ, EXT,
EXTW, INS, LI[16], LI[48], LSA, LU20I, MOVE, MOVE.BALC, MOVEP, MOVEP[REV], MOVN, MOVZ,
NOP[32], NOP[16], NOR, NOT[16], OR[32], OR[16], ORI, RESTORE[32], RESTORE.JRC[16],
RESTORE.JRC[32], ROTR, ROTRV, SAVE[16], SAVE[32], SEB, SEH, SEQI, SLL[32], SLL[16], SLLV,
SLT, SLTI, SLTIU, SLTU, SOV, SRA, SRAV, SRL[32], SRL[16], SRLV, SUB, SUBU[32], SUBU[16],
WSBH, XOR[32], XOR[16], XORI

• Links: BALC[32], BALC[16], BALRSC, JALRC[32], JALRC[16], JALRC.HB, MOVE.BALC

• MDU: DIV, DIVU, MOD, MODU, MHU, MUHU, MUL[32], MUL[4X4], MULU

• COP: DI, EI, MFC0

• Special: RDPGPR, WRPGPR

• SC: SC, SCE

15.1.2 Consumers
• L/S Base: CACHE, PREF, PREFX, LB[U12], LB[16], LB[GP], LB[S9], LBU[U12], LBU[16], LBU[GP],

LBU[S9], LBUX, LBX, LH[U12], LH[16], LH[GP], LH[S9], LHU[U12], LHU[16], LHU[GP], LHU[S9],
LHUX, LHUXS, LHX, LHXS, LL, LLE, LW[U12], LW[16], LW[4X4], LW[GP16], LW[GP], LW[S9], LW[SP],
LWM, LWPC, LWX, LWXS[32], LWXS[16], UALH, UALWM, RESTORE[32], RESTORE.JRC[16],
RESTORE.JRC[32], SAVE[16], SAVE[32], SB[16], SB[GP], SB[S9], SBX, SC, SCE, SH[U12], SH[16],
SH[GP], SH[S9], SHX, SHXS, SW[U12], SW[16], SW[4X4], SW[GP], SW[GP16], SW[S9], SW[SP],
SWM, SWPC[48], SWX, SWXS, UASH, UASWM

• St. Data: SAVE[16], SAVE[32], SB[16], SB[GP], SB[S9], SBX, SC, SH[U12], SH[16], SH[GP], SH[S9],
SHX, SHXS, SW[U12], SW[16], SW[4X4], SW[GP], SW[GP16], SW[S9], SW[SP], SWM, SWPC[48],
SWX, SWXS, UASH, UASWM

• Arithmetic: ADD, ADDIU[32], ADDIU[48], ADDIU[GP48], ADDIU[GP.B], ADDIU[GP.W], ADDIU[R1.SP],
ADDIU[R2], ADDIU[RS5], ADDIU[NEG], ADDIUPC[32], ADDIUPC[48], ADDU[32], ADDU[16],
ADDU[4X4], ALU20IPC[GP], AND[32], AND[16], ANDI[32], ANDI[16], AU20IPC, CLO, CLZ, EXT,
EXTW, INS, LI[16], LI[48], LSA, LU20I, MOVE, MOVE.BALC, MOVEP, MOVEP[REV], MOVN, MOVZ,

 197

15 Instruction Delay Cycles — Revision 01.20

NOP[32], NOP[16], NOR, NOT[16], OR[32], OR[16], ORI, RESTORE[32], RESTORE.JRC[16],
RESTORE.JRC[32], ROTR, ROTRV, SAVE[16], SAVE[32], SEB, SEH, SEQI, SLL[32], SLL[16], SLLV,
SLT, SLTI, SLTIU, SLTU, SOV, SRA, SRAV, SRL[32], SRL[16], SRLV, SUB, SUBU[32], SUBU[16],
WSBH, XOR[32], XOR[16], XORI

• MDU: DIV, DIVU, MOD, MODU, MHU, MUHU, MUL[32], MUL[4X4], MULU

• Special: RDPGPR, WRPGPR

• COP0: MTC0

15.1.3 Transaction Delay Cycles
The following table shows transaction delay cycles for nanoMIPS on I7200. The instructions have been
grouped by category.

Table 121: Transaction Delay Cycles

Consumer

L/S
Base

St Data Arith MDU Branch Jump Special COP0 COP1

Loads 3 2 2 2 2 2 2 2

Arith 2 1 1 1 1 1 1 1

Links 2 1 1 1 1 1 1 1

MDU 6 5 5 5 5 5 4 5

COP 3 2 2 2 2 2 2 2

Special 2 1 1 1 1 1 1 1

Producer

SC 3 2 2 2 2 2 2 2

15.2 MTC0 Instruction Considerations
Any MTC0 instruction that can potentially change the operating mode (kernel, supervisor, user) or context
(memory mapping) should be executed before a JALRC.HB instruction to avoid hazards. Instructions
following MTC0 - JALRC.HB pair will thus be fetched and executed in the new mode.

Execution of the MTC0 instruction can change the following register bits:

• Status.ERL: Changes the mapping of KUSeg memory segment. If the program is being executed in the
KUSeg segment, and the MTC0 instruction that modifies the value of the ERL bit is not placed in the
delay slot of a JALR.HB instruction, the instructions following the MTC0 instruction may be fetched from
a different memory region.

• Status.ERL, Status.EXL, Status.KSU: Changes the mode of operation. If the MTC0 instruction that
modified the mode is not placed in the delay slot of JALR.HB instruction, the instructions following the
MTC0 instruction may be fetched in kernel mode but executed in the new mode.

• Status.KX, Status.SX, Status.UX: These bits determines the access privilege to 64-bit memory
segments. If the program is being executed in a 64-bit segment and the MTC0 instruction that modified
the value of these bits is not placed in the delay slot of JALR.HB instruction, the instructions following
the MTC0 instruction may be fetched incorrectly.

Other operating mode changes include writes to the TLB (such as through TLBWR instruction) and writes
to the MPU control registers. These operations also require a JALRC.HB instruction hazard barrier to avoid
hazards.

 198

16 MIPS On-Chip Instrumentation — Revision 01.20

16 MIPS On-Chip Instrumentation
This chapter provides a brief overview of the interface and external debugging environment required to debug
MIPS processors that incorporate the MIPS On-Chip Instrumentation (OCI) debug system for multi-core
designs. Please refer to the community page link (https://www.mips.com/develop/tools/) for information on
MIPS probes, Codescape debug tools, SDKs, and documentation.

The I7200 core implements the MIPS OCI 32-Bit Debug System (OCI32). MIPS developed OCI32 to provide
comprehensive debugging and performance-monitoring capabilities for single and multicore processor designs
that can have multiple Virtual Processing Elements (VPEs) per core and multiple thread contexts (TCs) per
VPE.

16.1 I7200 OCI Debug System Overview
The OCI32 debug system consists of several distinct components: debug extensions to the MIPS
processor core, the APB access port, the Debug Control Register, and the hardware breakpoint unit. The
following figure shows the relationship between these components in a single-core implementation.

Figure 38: OCI 32-Bit System Block Diagram

 199

16 MIPS On-Chip Instrumentation — Revision 01.20

APB - MIPS Debug Hub Interface
An I7200 implementation can incorporate up to four OCI32 compliant cores and a Coherence Manager
(CM2.6). Each core and the Coherence Manager incorporate a standard AMBA APB slave port to provide
access from an APB-enabled system-level debug controller in a mixed-processor SoC or via a MIPS
Debug Hub (MDH). The MDH routes debug control and data signals from a JTAG probe or on-chip APB
master device as shown in the following figure.

Figure 39: I7200 Multi-Core Configuration with MDH

APB Debug Port
The APB port is used to access the core APB debug registers. These registers allow a probe or an
APB-enabled debug controller to communicate with the rest of the debug module and the core. In an
implementation with multiple VPEs, a single APB port provides access to (and within) each core. Each VPE
has its own address space and set of APB debug resisters.

The core APB debug registers are used for determining core status, status and control of debug
operations, changing debug settings, causing instructions to be executed, and providing other
instrumentation functions such as performance analysis.

16.2 APB Map and Address Regions

Table 122: APB Map

A[15:0] Device Description
0x0000-0x0FFF CM2.6 Coherence Manager

0x1000-0x1FFF Core 0 Core 0

0x2000-0x2FFF Core 1 Core 1

0x3000-0x3FFF Core 2 Core 2

0x4000-0x4FFF Core 3 Core 3

Within each core, the 4K APB address space is divided into ranges for each VPE. A core can have 1,
2, or 3 VPEs. Debug tools read the IDCODE register in each VPE range to determine whether that VPE
is present. IDCODE Bit 0 is 1 if the VPE is present. If a VPE is not present, its entire 256-byte range is
considered reserved and all registers in the range are 0.

200

16 MIPS On-Chip Instrumentation — Revision 01.20

Table 123: APB Address Regions

A[11:0] Region Description
0x000-0x0FF VPE0 Debug registers for VPE0

0x100-0x1FF VPE1 Debug registers for VPE1

0x200-0x2FF VPE2 Debug registers for VPE2

0x300-0xFC7 Reserved Read as 0, writes ignored

0xFC8-0xFFF ID ID register block

16.3 Power Management
In the I7200 OCI system, cores do not need to be powered up at all times. Instead, the probe directly
accesses CPC registers through the CM APB debug port to monitor and control the power state of each
core and the CM.

Note: The MIPS Debug Hub (MDH) should be always be powered on and clocked.

Table 124: APB Behavior for Core States

Core State Definition OCI_Control APB Behavior
Unpowered SI_TDOIsolate=1 – SLVERR returned for all reads and writes

Powered, not clocked SI_TDOIsolate=0,

SI_LPReq=1

Sleep=1 • IDCODE, IMPCODE, OCI_CONTROL,
DBG_OUT, ID regs accessible

• SLVERR returned for other reads and
writes

Powered, clocked SI_TDOIsolate=0,

SI_LPReq=0

Sleep=0 All registers accessible

When the core is powered but not clocked (state D2 or U2), IDCODE, IMPCODE, OCI_CONTROL,
DBG_OUT, and ID register block are accessible. Accessing other registers returns SLVERR.

When the core is powered and clocked (state U5 or U6), all APB registers are accessible.

In transition states U3 and U4, the CPC asserts the core's reset input, which is indicated by
OCI_CONTROL.Rocc. When the state reaches U5, reset is deasserted and the probe can clear
OCI_CONTROL.Rocc. SI<core>_LPReq=0 identifies the clocked and powered state. OCI logic contributes
to each core's SI<core>_LPAck output by holding off SI<core>_LPAck until in-progress APB requests
complete.

16.4 CM2.6 Address Regions
Registers that identify the device type and configuration, and indicate reset status within the CM, are
addressable through the APB. CPC registers can be accessed directly from the probe via the APB. Within
the CPC register blocks, registers are mapped to the same offsets as when accessing from a core.

Table 125: CM2.6 APB Address Regions

A[11:0] Region Description
0x000-0x0FF Debug CM debug registers

 201

16 MIPS On-Chip Instrumentation — Revision 01.20

A[11:0] Region Description
0x100-0x1FF CPC global 0x100: CPC_ACCESS_REG

0x108: CPC_SEQDEL_REG

0x110: CPC_RAIL_REG

0x118: CPC_RESETLEN_REG

0x120: CPC_REVISION_REG

0x200-0x2FF CPC core 0 0x200: CPC_CL_CMD_REG

0x208: CPC_CL_STAT_CONF_REG

0x210: CPC_CL_OTHER_REG

0x300-0x3FF CPC core 1

0x400-0x4FF CPC core 2

0x500-0x5FF CPC core 3

0xFC8-0xFFF ID ID register block

Others Reserved Read as 0, writes ignored

16.5 CM2.6 Debug Registers

Table 126: CM2.6 APB Debug Registers

A[7:0] Name Decription Function R/W
0x00 GCR_CONFIG CM2.6 configuration Copy of the GCR_CONFIG register R

0x04 IDCODE Device ID Identifies the device manufacturer,
part number, and revision

R

0x08 IMPCODE Implementation code Identifies the main debug features
implemented.

R

0x14 OCI_CONTROL OCI control register Provides access to CM debug
status and control.

R/W

Others Reserved Reserved Reserved for expansion. Read as 0,
writes ignores

–

The following tables define the IDCODE bits.
31 28 27 12 11 1 0
Version PartNumber ManufID R

Name Bits Description R/W Reset State
Version 31:28 Identifies the CM version number R Externally driven

PartNumber 27:12 Identifies the CM part number R Externally driven

ManufID 11:1 JEDEC ID R Externally driven

R 0 Reserved R 1

The following tables define the IMPCODE bits.
31 29 28 14 13 11 10 1 0
DbgVer 0 Type TypeInfo 0

202

16 MIPS On-Chip Instrumentation — Revision 01.20

Name Bits Description R/W Reset State
DbgVer 31:29 Identifies the OCI version number R 0

Type 13:11 Type of entity, 2=CM R 2

TypeInfo 10:1 Unused with Type=CM R 0

The following tables define the OCI_CONTROL bits.
31 30 23 22 21 20 2 1 0

Rocc 0 Doze Halt 0 DPD 0

Name Bits Description R/W Reset State
Rocc 31 CM Reset Occurred since last cleared.

Rocc keeps the value 1 as long as reset is applied.

The probe clears Rocc by writing 0.

R/W0 1

Doze 22 Unused. R 0

Halt 21 Unused. R 0

DPD 1 DisableProbeDebug R Externally set

The following table defines the CM2.6 APB Read-Only ID Registers.

Table 127: CM2.6 APB Read-Only ID Registers

A[11:0] Register
Name

Description Function Read Value

0xFC8 DEVID IMG block type Identifies IMG block type (7=CM) 0x00000007

0xFCC DEVTYPE Device type MAJOR=5 (debug component),
SUBTYPE=0 (other)

0x00000005

0xFD0 PIDR4 Peripheral ID part 4 Size=0 (4K), DES_2=4'b0010
(JEDEC)

0x00000002

0xFE0 PIDR0 Peripheral ID part 0 0 (other) 0x00000000

0xFE4 PIDR1 Peripheral ID part 1 DES_0=4'b0111 (JEDEC), PART_1=0 0x00000070

0xFE8 PIDR2 Peripheral ID part 2 Rev=GCR_REV[11:8],
DES_1=4'b1010 (JEDEC)

0x000000XA

0xFEC PIDR3 Peripheral ID part 3 Rev=GCR_REV[3:0], CMOD=0 0x000000X0

0xFF0 CIDR0 Component ID part 0 Fixed value for CoreSight 0x0000000D

0xFF4 CIDR1 Component ID part 1 Fixed value for CoreSight 0x000000E0

0xFF8 CIDR2 Component ID part 2 Fixed value for CoreSight 0x00000005

0xFFC CIDR3 Component ID part 3 Fixed value for CoreSight 0x000000B1

Others Reserved Reserved Read as 0 0x00000000

16.6 I7200 Core MPS Implementation
This section describes the debug configuration register values and other implementation details for the
I7200 Core MPS.

Refer to the MIPS On-Chip Instrumentation 32-Bit Debug Specification, which describes the operation of
the OCI32 debug system, for more information.
Debug Version DBGver in CP0.Debug register or APB.IMCODE: 0 (OCI debug version1)

 203

16 MIPS On-Chip Instrumentation — Revision 01.20

APB Data Registers • ID Code (set by customer)
• Implementation Code 0x01414800

Hardware Breakpoint Registers • IBS: 0x48008000
• IBCn: 0x00000040
• DBS: 0x44008000
• DBCn: 0x4000000

Breakpoint Trigger Parameters • Virtualization (VZ) not implemented
• Data breakpoint data address sampling not implemented
• Data breakpoint value match implemented
• Data breakpoint address range matching not implemented

OCI Control Register • Bits 13:11 ISAOnDebug: 11 for nanoMIPS
• 31:24 = Tx_Count and 23:16 = Rx_Count. Present in I7200

PC/PCsampling • No IM bit in the PC for nanoMIPS (no ISA mode switching)
• PC sampling uses two registers (PCSAMP1 and PCSAMP2)

16.7 More Information on Debug Systems
For more information, refer to the following documents:
• MIPS Debug Hub Technical Reference Manual

• MIPS On-Chip Instrumentation 32-Bit Debug Specification

 204

A Revision History — Revision 01.20

A Revision History
Revision Date Description
01.20 April 30, 2018 • First version released for I7200 Release 1.2.0.

• Added information on L2 cache flush and burst operations.
• Added DSPRAM Prediction Buffer section.
• For EVA, changed references to pins to instead refer to the bit

settings.
• Minor edits throughout.

01.10 March 31, 2018 • First version released for I7200 Release 1.1.0.
• Added Instruction Delay Cycles chapter.
• Described limitations for the QoS Policy Manager mode.
• Added hazard barrier instruction information.
• Updated the section on Programming the Boot Exception Vector

(BEV).
• Removed the Global Debug Block section
• Added a section on CM Performance Counters.
• Minor edits throughout.

01.00 January 29, 2018 Initial release.

 205

Copyright © Wave Computing, Inc. All rights reserved.
www.wavecomp.ai

