

2 MIPS32® M6200 Processor Core Family Datasheet, Revision 01.00

• Data integrity features:

• ECC (optional) on all ISRAMs and DSRAMs

• Parity (optional) on address and data bus

• The M6200 retains features from the microAptiv UC,
including:

• 32-bit General Purpose Registers (GPR)

• Instruction and Data SRAM interfaces

• Memory Protection Unit

• Microcontroller Application Specific Extension
(MCU ASE)

• Multiply/Divide Unit

• DSP Module (optional)

• Debug and profiling support

• Secure Debug

• Coprocessor interface

• Power management

• MIPS32 Architecture Features

• Vectored interrupts and support for external inter-
rupt controller

• Programmable exception vector base

• Simple boot exception vector relocation via 2 exter-
nally controlled pins

• GPR shadow registers (1, 2, 4, 8, or 16 additional
shadows can be optionally added to minimize
latency for interrupt handlers)

• Bit field manipulation instructions

• microMIPS32 Instruction Set Architecture Release 6

• microMIPS ISA reduces code size over MIPS32,
while maintaining MIPS32 performance.

• Combining both 16-bit and 32-bit opcodes, micro-
MIPS supports all MIPS32 instructions, with new
optimized encoding. Frequently used MIPS32
instructions are available as 16-bit instructions.

• Stack pointer implicit in instruction.

• MIPS32 assembly and ABI-compatible.

• Supports MIPS architecture Modules and ASEs,
including DSP and MCU.

• MCU™ ASE

• Increases the number of interrupt hardware inputs
from 6 to 8 for Vectored Interrupt (VI) mode, and
from 63 to 255 for External Interrupt Controller
(EIC) mode.

• Separate priority and vector generation. 16-bit vec-
tor address is provided.

• Hardware assist combined with the use of Shadow
Register Sets to reduce interrupt latency during the
prologue and epilogue of an interrupt.

• An interrupt return with automated interrupt epi-
logue handling instruction (IRET) improves inter-
rupt latency.

• Supports optional interrupt chaining.

• Two memory-to-memory atomic read-modify-write
instructions (ASET and ACLR) eases commonly
used semaphore manipulation in microcontroller
applications. Interrupts are automatically disabled
during the operation to maintain coherency.

• Memory Management Unit

• Simple Fixed Mapping Translation (FMT) mecha-
nism

• ECC Support

• The ISRAM and DSRAM support optional single-
error correction and double- error detection
(SECDED), with correction in software.

• Transmission Parity Support

• The ISRAM and DSRAM interfaces support
optional parity detection on transactions between
master and slave.

• Memory Protection Unit

• Optional feature that improves system security by
restricting access, execution, and trace capabilities
from untrusted code in predefined memory regions.

• Simple SRAM-Style Interface

• 32-bit address and 64-bit data

• Single or multi-cycle latencies

• Dual instruction and data interfaces

• Partially registered interface

• MIPS DSP Module (Revision 3.0)

• Support for MAC operations with 4 additional pairs
of HI/LO accumulator registers (Ac0 - Ac3)

• Fractional data types (Q15, Q31) with rounding
support

• Saturating arithmetic with overflow handling

• SIMD instructions operate on 2x16-bit or 4x8-bit
operands simultaneously

• Separate MDU pipeline with full-sized hardware
multiplier to support back-to-back operations

• The DSP Module is build-time configurable.

• Multiply/Divide Unit (without DSP)

• Maximum issue rate of one 32x16 multiply per
clock via on-chip 32x16 hardware multiplier array.

MIPS32® M6200 Processor Core Family Datasheet, Revision 01.00 3

• Maximum issue rate of one 32x32 multiply every
other clock

• Early-in iterative divide. Minimum 11 and maxi-
mum 34 clock latency (dividend (rs) sign exten-
sion-dependent)

• Multiply/Divide Unit (with DSP configuration)

• Maximum issue rate of one 32x32 multiply per
clock via on-chip 32x32 hardware multiplier array

• Maximum issue rate of one 32x32 multiply every
clock

• Early-in iterative divide. Minimum 12 and maxi-
mum 38 clock latency (dividend (rs) sign exten-
sion-dependent)

• Multi-Core Support

• External lock indication enables multi-processor
semaphores based on LL/SC instructions

• External sync indication allows memory ordering

• Coprocessor 2 Interface

• 64b data width interface to an external coprocessor

• Interrupt Controller Unit

• An optional feature that provides supports for up to
256 interrupts, configurable at build-time in options
of 8, 16, 32, 64, 128, and 256 sources

• Interrupts are configurable as to polarity, level or
edge sensitivity, and dual- or single-edge sampling

• Support for MCU ISA

• Includes 32-bit Watchdog timer

• Power Control

• Minimum frequency: 0 MHz

• Power-down mode (triggered by WAIT instruction)

• Debug/Profiling and iFlowtrace™ Mechanism

• CPU control with start, stop, and single stepping

• Virtual instruction and data address/value break-
points

• Hardware breakpoint supports both address match
and address range triggering

• Optional simple hardware breakpoints on virtual
addresses; 8I/4D or 4I/2D breakpoints, or no break-
points

• Complex hardware breakpoints with 8I/4D simple
breakpoints

• iFlowtrace support for real-time instruction PC and
special events

• PC and/or load/store address sampling for profiling

• Performance Counters

• Support for Fast Debug Channel (FDC)

• Support for trace conversion block that converts
iFlowtrace signals to ATB interface signals.

• Secure Debug

• An optional feature that disables debug access in an
untrusted environment

• Testability

• Full scan design achieves test coverage in excess of
99% (dependent on library and configuration
options)

Architecture Overview

The M6200 core contains both required and optional blocks,
as shown in Figure 1. Required blocks must be implemented
to remain MIPS-compliant. Optional blocks can be added to
the M6200 core based on the needs of the implementation.

The required blocks are as follows:

• Instruction Decode

• Execution Unit

• General Purpose Registers (GPR)

• Multiply/Divide Unit (MDU)

• System Control Coprocessor (CP0)

• Memory Management Unit (MMU)

• I/D SRAM Interfaces

• Power Management

Optional or configurable blocks include:

• DSP (integrated with MDU)

• Memory Protection Unit (MPU)

• Coprocessor 2 interface

• Interrupt Controller Unit (ICU)

• Debug/Trace/Profiling with optional APB Debug,
Hardware Breakpoints, PC Sampling, Performance
Counters, Fast Debug Channel, and iFlowtrace

The section "MIPS32® M6200 Core Required Logic Blocks"
on page 5 discusses the required blocks. The section
"MIPS32® M6200 Core Optional or Configurable Logic
Blocks" on page 10 discusses the optional blocks.

Pipeline Flow

The M6200 core implements a 6-stage pipeline. The pipeline
allows the processor to achieve high frequency while
minimizing device complexity, reducing both cost and power
consumption.

MIPS32® M6200 Processor Core Family Datasheet, Revision 01.00 5

A Stage: Address Generation

• Data access addresses are calculated.

• Instructions are fully decoded

• Multiplication Booth recode is performed.

E Stage: Execution

• Branch evaluation is performed, causing a redirect if the
instruction branches.

• Arithmetic, logic, and multiplication operations are
performed. Depending on the size of the operands, the
multiplication operation may be double pumped.

• Division uses an iterative sequence, and is non-blocking
until an instruction uses the division result.

• Fixed-mapping translation is used for cores without TLB
support

M Stage: Memory Access

• Data access is performed for load and store instructions.

• On cacheable accesses, store instructions are written to
internal write buffers, where the data will be written to
external memory as soon as the interface is free or idle.

• On uncacheable accesses, store instructions obeys
strongly-ordered memory consistency rules by stalling
until the write is the oldest instruction in the pipeline
before writing to the external memory.

W Stage: Write

• Exceptions are prioritized and flagged.

• Data reads are aligned before writing to the register file.

MIPS32® M6200 Core Required
Logic Blocks

The required logic blocks of the M6200 core (Figure 1) are
defined in the following subsections.

Execution Unit

The M6200 core execution unit implements a load/store
architecture with single-cycle ALU operations (logical, shift,
add, subtract) and an autonomous multiply/divide unit.

 The execution unit includes:

• Single cycle Arithmetic Logic Unit (ALU) for
performing arithmetic, bitwise logical operations and
branch target calculation.

• Adder for load/store address calculation

• Address unit for calculating the next PC and next fetch
address selection muxes.

• Load Aligner.

• Shifter and Store Aligner.

• Branch condition comparator.

• Bypass muxes to advance result between two instructions
with data dependency.

• Leading Zero/One detect unit for implementing the CLZ
and CLO instructions.

• Read-modify-write control logic implementing atomic
instructions defined in the MCU ASE.

• Actual execution of the Atomic Instructions defined in
the MCU ASE.

• A separate DSP ALU and Logic block for performing
part of DSP Module instructions, such as arithmetic/shift/
compare operations when the DSP function is
configured.

General Purpose Registers

The M6200 core contains thirty-two 32-bit general-purpose
registers used for integer operations and address calculation.
Optionally, 1, 2, 4, 8, or 16 additional register file shadow sets
(each containing thirty-two registers) can be added to
minimize context switching overhead during interrupt/
exception processing. The register file is flop-based and is
fully bypassed to minimize operation latency in the pipeline.

Multiply/Divide Unit (MDU)

The M6200 core includes a multiply/divide unit (MDU) that
contains a separate, dedicated pipeline for integer multiply/
divide operations and DSP Module multiply instructions
(with DSP option). This pipeline operates in parallel with the
integer unit (IU) pipeline and does not stall when the IU
pipeline stalls. This allows the long-running MDU operations
to be partially masked by system stalls and/or other integer
unit instructions.

The MIPS architecture defines that the result of a multiply or
divide operation be placed in general-purpose registers
(without DSP option) or one of four pairs of HI and LO
registers (with DSP enabled).

MDU with 32x32 DSP Multiplier with DSP Option

With the DSP configuration option enabled, the MDU
supports execution of one 16x16, 32x16, or 32x32 multiply or
multiply-accumulate operation every clock cycle with the
built-in 32x32 multiplier array. The multiplier is shared with
DSP Module operations.

6 MIPS32® M6200 Processor Core Family Datasheet, Revision 01.00

The MDU also implements various shift instructions
operating on the HI/LO register and multiply instructions as
defined in the DSP Module. It supports all the data types
required for this purpose and includes four extra HI/LO
registers as defined by the Module.

Table 1 lists the latencies (number of cycles for an instruction
to propagate from the beginning to the end of the core’s
pipeline) and repeat rates (throughput without data
dependency) for the DSP multiply and dot-product
operations. The approximate latencies and repeat rates are
listed in terms of pipeline clocks. For a more detailed
discussion of latencies and repeat rates, refer to the MIPS32
M6200 Processor Core Programmer’s Guide.

MDU with 32x16 High-Performance Multiplier

Without the DSP option, the high-performance MDU consists
of a 32x16 Booth-recoded multiplier, a divide state machine,
and the necessary multiplexers and control logic. The first
number shown (‘32’ of 32x16) represents the rs operand. The
second number (‘16’ of 32x16) represents the rt operand. The
M6200 core only checks the value of the rt operand to
determine how many times the operation must pass through
the multiplier. The 16x16 and 32x16 operations pass through
the multiplier once. A 32x32 operation passes through the
multiplier twice.

The MDU supports execution of one 16x16 or 32x16
multiply or multiply-accumulate operation every clock cycle;
32x32 multiply operations can be issued every other clock
cycle. Appropriate interlocks are implemented to stall the
issuance of back-to-back 32x32 multiply operations. The
multiply operand size is automatically determined by logic
built into the MDU.

Table 2 and Table 3 list the repeat rate (how often the
operation can be reissued when there is no data dependency)

and latency (number of cycles until a result is available) for
the multiply and divide instructions. The approximate latency
and repeat rates are listed in terms of pipeline clocks. For a
more detailed discussion of latencies and repeat rates, refer to
the MIPS32 M6200 Processor Core Family Programmer’s
Guide.

Table 1 DSP-related Latencies and Repeat Rates

Opcode Latency Repeat
Rate

Multiple and dot-product without satura-
tion after accumulation

6 1

Multiple and dot-product with saturation
after accumulation (word)

6 1

Multiply and dot-product with saturation
after accumulation (doubleword)

7 1

Accumulator shifter uses immediately pre-
vious multiply result.

7 2

Multiply without accumulation 6 1

Table 2 High-Performance Integer Multiply/Divide
Unit Latencies and Repeat Rates with DSP

Opcode

Operand
Size

(mul rt)
(div rs) Latency

Repeat
Rate

MUL, MUH,
MULU, MUHU
(GPR destination)

16 bits 6 1

32 bits 6 1

DIV, MOD/ DIVU,
MODU
(GPR destination)

4 bits 11/10 8/7

8 bits 15/14 12/11

16 bits 23/22 20/19

24 bits 31/30 28/27

32 bits 39/38 36/35

MADD/MADDU,
MSUB/MSUBU
(with DSP)

GPR is 32-
bit

Accumula-
tor is 64-bit

6 1

Table 3 High-Performance Integer Multiply/Divide
Unit Latencies and Repeat Rates without DSP

Opcode

Operand
Size

(mul rt)
(div rs) Latency

Repeat
Rate

MUL, MUH,
MULU, MUHU
(GPR destination)

16 bits 6 (I-R-A-E-
M-W)

1

32 bits 7 (I-R-A-E-E-
M-W,

32x16 array is
in E)

2

DIV, MOD/DIVU,
MODU
(GPR destination)

4 11/10 8/7

8 bits 15/14 12/11

16 bits 23/22 20/19

24 bits 31/30 28/27

32 bits 39/38 36/35

MIPS32® M6200 Processor Core Family Datasheet, Revision 01.00 7

System Control Coprocessor (CP0)

In the MIPS architecture, CP0 is responsible for the virtual-
to-physical address translation, the exception control system,
the processor’s diagnostics capability, the operating modes
(kernel, user, and debug), and whether interrupts are enabled
or disabled. Configuration information, such as presence of
build-time options, such as microMIPS or Coprocessor 2
interface, is also available by accessing the CP0 registers.

Coprocessor 0 also contains the logic for identifying and
managing exceptions. Exceptions can be caused by a variety
of sources, including boundary cases in data, external events,
or program errors.

Interrupt Handling

The M6200 core includes support for eight hardware
interrupt pins, two software interrupts, and a timer interrupt.
These interrupts can be used in any of three interrupt modes,
as defined by Release 2 of the MIPS32 Architecture:

• Interrupt compatibility mode, which acts identically to
that in an implementation of Release 1 of the
Architecture.

• Vectored Interrupt (VI) mode, which adds the ability to
prioritize and vector interrupts to a handler dedicated to
that interrupt, and to assign a GPR shadow set for use
during interrupt processing. The presence of this mode is
denoted by the VInt bit in the Config3 register. This mode
is architecturally optional; but it is always present on the
M6200 core, so the VInt bit will always read as a 1 for
the M6200 core.

• External Interrupt Controller (EIC) mode, which
redefines the way in which interrupts are handled to
provide full support for an external interrupt controller
handling prioritization and vectoring of interrupts. The
presence of this mode is indicated by the VEIC bit in the
Config3 register. Again, this mode is architecturally
optional. On the M6200 core, the VEIC bit is set
externally by the static input SI_EICPresent, which
allows system logic to indicate the presence of an
external interrupt controller.

The reset state of the processor is interrupt compatibility
mode, such that processors supporting Release 6 of the
Architecture (such as the M6200 core) are fully compatible
with implementations of Release 1 of the Architecture.

VI or EIC interrupt modes can be combined with the optional
shadow registers to specify which shadow set should be used
on entry to a particular vector. The shadow registers improve

interrupt latency by avoiding the need to save context when
invoking an interrupt handler.

In the M6200 core, interrupt latency is reduced by:

• Speculative interrupt-vector prefetching during the
pipeline flush.

• Interrupt Automated Prologue (IAP) in hardware:
Shadow Register Sets remove the need to save GPRs,
and IAP removes the need to save specific Control
Registers when handling an interrupt.

• Interrupt Automated Epilogue (IAE) in hardware:
Shadow Register Sets remove the need to restore GPRs,
and IAE removes the need to restore specific Control
Registers when returning from an interrupt.

• Allow interrupt chaining. When servicing an interrupt
and interrupt chaining is enabled, there is no need to
return from the current Interrupt Service Routine (ISR) if
there is another valid interrupt pending to be serviced.
The control of the processor can jump directly from the
current ISR to the next ISR without IAE and IAP.

• Simple exception vector relocation via the externally
controlled pin SI_Offset.

GPR Shadow Registers

The MIPS32 Architecture optionally removes the need to
save and restore GPRs on entry to high-priority interrupts or
exceptions, and to provide specified processor modes with
the same capability. This is done by introducing multiple
copies of the GPRs, called shadow sets, and allowing
privileged software to associate a shadow set with entry to
kernel mode via an interrupt vector or exception. The normal
GPRs are logically considered shadow set zero.

The number of GPR shadow sets is a build-time option. The
M6200 core allows 1 (the normal GPRs), 2, 4, 8, or 16
shadow sets. The highest number actually implemented is
indicated by the SRSCtlHSS field. If this field is zero, only the
normal GPRs are implemented.

Shadow sets are new copies of the GPRs that can be
substituted for the normal GPRs on entry to kernel mode via
an interrupt or exception. Once a shadow set is bound to a
kernel-mode entry condition, references to GPRs operate
exactly as one would expect, but they are redirected to
registers that are dedicated to that condition. Privileged
software may need to reference all GPRs in the register file,
even specific shadow registers that are not visible in the
current mode, and the RDPGPR and WRPGPR instructions
are used for this purpose. The CSS field of the SRSCtl register
provides the number of the current shadow register set, and
the PSS field of the SRSCtl register provides the number of the

8 MIPS32® M6200 Processor Core Family Datasheet, Revision 01.00

previous shadow register set that was current before the last
exception or interrupt occurred.

If the processor is operating in VI interrupt mode, binding of
a vectored interrupt to a shadow set is done by writing to the
SRSMap register. If the processor is operating in EIC interrupt
mode, the binding of the interrupt to a specific shadow set is
provided by the external interrupt controller and is configured
in an implementation-dependent way. Binding of an
exception or non-vectored interrupt to a shadow set is done
by writing to the ESS field of the SRSCtl register. When an
exception or interrupt occurs, the value of SRSCtlCSS is copied
to SRSCtlPSS, and SRSCtlCSS is set to the value taken from the
appropriate source. On an ERET, the value of SRSCtlPSS is
copied back into SRSCtlCSS to restore the shadow set of the
mode to which control returns.

Modes of Operation

The M6200 core implements three modes of operation:

• User mode is most often used for applications pro-
grams.

• Kernel mode is typically used for handling excep-
tions and operating-system kernel functions, includ-
ing CP0 management and I/O device accesses.

• Debug mode is used during system bring-up and
software development.

Figure 3 shows the virtual address map of the MIPS
Architecture.

Figure 3 M6200 Core Virtual Address Map

Memory Management Unit (MMU)

The M6200 core contains a simple Fixed Mapping
Translation (FMT) MMU that interfaces between the
execution unit and the SRAM controller.

Fixed Mapping Translation (FMT)

A FMT is smaller and simpler than the full Translation
Lookaside Buffer (TLB) style MMU found in other MIPS
cores. Like a TLB, the FMT performs virtual-to-physical
address translation and provides attributes for the different
segments. Those segments that are unmapped in a TLB
implementation (kseg0 and kseg1) are translated identically
by the FMT.

kuseg

kseg0

kseg1

kseg2

kseg3

0x00000000

0x7FFFFFFF

0x80000000

0x9FFFFFFF

0xA0000000

0xBFFFFFFF

0xC0000000

0xDFFFFFFF

0xE0000000

0xF1FFFFFF

Kernel Virtual Address Space

Unmapped, 512 MB
Kernel Virtual Address Space

Uncached

Unmapped, 512 MB
Kernel Virtual Address Space

User Virtual Address Space

1. This space is mapped to memory in user or kernel mode,
 and by the Debug module in debug mode.

0xFF200000
0xFF3FFFFF
0xFF400000

0xFFFFFFFF

Memory/DEBUG1

Mapped, 2048 MB

Fixed Mapped, 512 MB

Fixed Mapped

Fixed Mapped

10 MIPS32® M6200 Processor Core Family Datasheet, Revision 01.00

Power Management

The M6200 core offers a number of power management
features, including low-power design, active power
management, and power-down modes of operation. The core
is a static design that supports slowing or halting the clocks,
which reduces system power consumption during idle
periods.

The M6200 core provides two mechanisms for system-level
low-power support:

• Register-controlled power management

• Instruction-controlled power management

Register-Controlled Power Management

Three bits—StatusEXL, StatusERL, and DebugDM—support the
power-management function by allowing the user to change
the power state if an exception or error occurs while the core
is in a low-power state. Depending on what type of exception
is taken, one of these three bits will be asserted and reflected
on the SI_EXL, SI_ERL, or EJ_DebugM outputs. The external
agent can look at these signals and determine whether to
leave the low-power state to service the exception.

The following four power-down signals are part of the system
interface and change state as the corresponding bits in the
CP0 registers are set or cleared:

• The SI_EXL signal represents the state of the EXL bit (1)
in the CP0 Status register.

• The SI_ERL signal represents the state of the ERL bit (2)
in the CP0 Status register.

• The EJ_DebugM signal represents the state of the DM bit
(30) in the CP0 Debug register.

Instruction-Controlled Power Management

The second mechanism for invoking power-down mode is by
executing the WAIT instruction. When the WAIT instruction
is executed, the internal clock is suspended; however, the
internal timer and some of the input pins (SI_Int[7:0], SI_NMI,
SI_WarmResetN, and SI_ColdResetN) continue to run. Once
the CPU is in instruction-controlled power management
mode, any interrupt, NMI, or reset condition causes the CPU
to exit this mode and resume normal operation.

The M6200 core asserts the SI_Sleep signal, which is part of
the system interface bus, whenever the WAIT instruction is
executed. The assertion of SI_Sleep indicates that the clock
has stopped and the M6200 core is waiting for an interrupt.

MIPS32® M6200 Core Optional or
Configurable Logic Blocks

The M6200 core contains several optional or configurable
logic blocks, shown as shaded in the block diagram in Figure
1.

Data Integrity

The M6200 core optionally supports single-error correction
and double-error detection (SECDED). Errors are reported in
COP0 registers and rely on software correction. ECC is
generated or checked for valid byte lanes.

In addition to ECC protection, the M6200 core also offers
data integrity protection on uncached data transmissions.
Parity is generated and checked for every 8 bits of data
transferred, and every 32 bits of address transferred.

Memory Protection Unit

The Memory Protection Unit can be configured to have from
1 to 16 memory protection regions. Each region is enabled by
registers that define the address, size, and protection of each
memory region. The Memory Protection Unit control is
implemented by CDMM (Common Device Memory Map)
registers. After they have been programmed, these control
registers can be locked to prohibit later modifications. Once
programmed, a Protection Exception will be triggered when
an Instruction Fetch or Data Access matches the address of
the protected memory region or any modification of the
EBase (base address of exception vectors) register was
attempted. Each protected region can also disable the
iFlowtrace capability. Typically, the Memory Protection Unit
improves system security by disabling access to bootcode and
preventing execution of non-trusted kernel mode code.

DSP Module

The M6200 core implements an optional DSP Module to
benefit a wide range of DSP, Media, and DSP-like
algorithms. The DSP module is highly integrated with the
Execution Unit and the MDU in order to share common logic
and to include support for operations on fractional data types,
saturating arithmetic, and register SIMD operations.
Fractional data types Q15 and Q31 are supported. Register
SIMD operations can perform up to four simultaneous add,
subtract, or shift operations and two simultaneous multiply
operations.

In addition, the DSP Module includes some key features that
efficiently address specific problems often encountered in
DSP applications. These include, for example, support for
complex multiply, variable-bit insert and extract, and

MIPS32® M6200 Processor Core Family Datasheet, Revision 01.00 11

implementation and use of virtual circular buffers. The
extension also makes available four additional sets of HI-LO
accumulators to better facilitate common accumulate
functions such as filter operation and convolutions.

Coprocessor 2 Interface

The M6200 core can be configured to have an interface for an
on-chip coprocessor. This coprocessor can be tightly coupled
to the processor core, allowing high-performance solutions
integrating a graphics accelerator or DSP, for example.

The coprocessor interface is extensible and standardized on
MIPS cores, allowing for design reuse. The M6200 core
supports a subset of the full coprocessor interface standard:
64b data transfer, no Coprocessor 1 support, and single issue
in-order data transfer to coprocessor.

The coprocessor interface is designed to ease integration with
customer IP. The interface allows high-performance
communication between the core and coprocessor. There are
no late or critical signals on the interface.

Interrupt Controller Unit (ICU)

The M6200 includes an optional Interrupt Controller Unit
(ICU) that supports the following features:

• Accepts up to 256 interrupt sources configurable at build-
time with option of 8, 16, 32, 64, 128, or 256 sources.

• Supports MCU ASE, where outputs drives an 8-bit
requested interrupt priority level.

• Distributes (hardwired) interrupt sources to the core.

• Backward compatibility with pre-defined MIPS
Technologies interrupt modes configurable by software.

• Supports interrupt source sensitivity (level-positive,
level-negative, edge-positive, edge-negative, dual-edge-
sensitive) configurable at build-time. All sources are
normalized to positive, level-sensitive signals.

• Interrupt Pending mask feature.

• Interrupt sources are mapped to SI_Int[7:0] or NMI.
Mapping is software-controlled, and control registers are
extended to reflect the widening of the SI_Int output bus.

• Single 32-bit watch-dog timer.

• Supports EIC Shadow register set use in EIC interrupt
mode. Shadow set values are hard-wired (a build-time
option).

Debug Support

The M6200 core provides for an optional Debug interface via
the MIPS Debug Hub (MDH) and Advanced Peripheral Bus

(APB) interface. MDH provides the capability for connection
to a JTAG or APB compatible debug system for improved
debug performance and support for multi-core systems. For
more information, refer to the MIPS Debug Hub Technical
Reference Manual (MD01070).

The APB accesses a number of registers used for determining
core and debug status, changing debug modes, causing
instructions to be executed, and providing other
instrumentation functions.

The M6200 core also provides a special Debug mode of
operation, in addition to standard User mode and Kernel
modes of operation. Debug mode is entered after a debug
exception is taken and continues until a debug exception
return (DERET) instruction is executed. During this time, the
processor executes the debug exception handler routine.

Optionally configurable at build time, a trace conversion
block (PDT2ATB) can be included in the M6200
environment. The trace conversion block resides outside of
the M6200 core and converts iFlowtrace signals to AMBA
Trace Bus (ATB) interface signals.

CP0 Debug Registers

Four debug registers (DEBUG, DEBUG2, DEPC, and DESAVE)
have been added to the MIPS Coprocessor 0 (CP0) register
set. The DEBUG and DEBUG2 registers show the cause of the
debug exception and are used for setting up single-step
operations. The DEPC (Debug Exception Program Counter)
register holds the address on which the debug exception was
taken, which is used to resume program execution after the
debug operation completes. Finally, the DESAVE (Debug
Exception Save) register enables the saving of general-
purpose registers used during execution of the debug
exception handler.

To exit debug mode, a Debug Exception Return (DERET)
instruction is executed. When this instruction is executed, the
system exits debug mode, allowing normal execution of
application and system code to resume.

Hardware Breakpoints

There are several types of simple hardware breakpoints
defined in the Debug specification. These halt the normal
operation of the CPU and force the system into debug mode.
There are two types of simple hardware breakpoints
implemented in the M6200 core: Instruction breakpoints and
Data breakpoints. Additionally, complex hardware
breakpoints can be included, which allow the detection of
more intricate sequences of events.

12 MIPS32® M6200 Processor Core Family Datasheet, Revision 01.00

The M6200 core can be configured with the following
breakpoint options:

• No data or instruction

• Two data and four instruction breakpoints

• Four data and eight instruction breakpoints, with
complex breakpoints

Instruction breakpoints match on instruction execution
operations, and the breakpoint is set on the virtual address. A
mask can be applied to the virtual address to set breakpoints
on a range of instructions.

Data breakpoints match on load/store transactions, and the
breakpoint is set on a virtual address value, with the same
single address or address range as the Instruction breakpoint.
Data breakpoints can be set on a load, a store, or both. Data
breakpoints can also be set to match on the operand value of
the load/store operation, with byte-granularity masking.
Finally, masks can be applied to both the virtual address and
the load/store value.

In addition, the M6200 core has a configurable feature to
support data and instruction address-range triggered
breakpoints, where a breakpoint can occur when a virtual
address is either within or outside a pair of 32-bit addresses.
Unlike the traditional address-mask control, address-range
triggering is not restricted to a power-of-two binary
boundary.

Complex breakpoints utilize the simple instruction and data
breakpoints and cause a breakpoint exception when particular
combinations of events are seen. Complex breakpoint
features include:

• Pass Counters - Each time a matching condition is seen, a
counter is decremented. The break or trigger will only be
enabled when the counter has counted down to 0.

• Tuples - A tuple is the pairing of an instruction and a data
breakpoint. The tuple will match if both the virtual
address of the load or store instruction matches the
instruction breakpoint, and the data breakpoint of the
resulting load or store address and optional data value
matches.

• Priming - This allows a breakpoint to be enabled only
after other break conditions have been met. Also called
sequential or armed triggering.

• Qualified - This feature uses a data breakpoint to qualify
when an instruction breakpoint can be taken. Once a load
matches the data address and the data value, the
instruction break will be enabled. If a load matches the
address, but has mis-matching data, the instruction break
will be disabled.

Performance Counters

Performance counters are used to accumulate occurrences of
internal predefined events/cycles/conditions for program
analysis, debug, or profiling. A few examples of event types
are clock cycles, instructions executed, specific instruction
types executed, loads, stores, exceptions, and cycles while the
CPU is stalled. There are two, 32-bit counters. Each can count
one of the 64 internal predefined events selected by a
corresponding control register. A counter overflow can be
programmed to generate an interrupt, where the interrupt
handler software can maintain larger total counts.

PC/Address Sampling

This sampling function is used for program profiling and hot-
spots analysis. Instruction PC and/or Load/Store addresses
can be sampled periodically. The result is scanned out
through the APB Debug port. The Debug Control Register
(DCR) is used to specify the sample period and the sample
trigger.

Fast Debug Channel (FDC)

The M6200 core includes optional FDC as a mechanism for
high bandwidth data transfer between a debug host/probe and
a target. FDC provides a FIFO buffering scheme to transfer
data serially, with low CPU overhead and minimized waiting
time. The data transfers occur in the background, and the
target CPU can either choose to check the status of the
transfer periodically, or it can choose to be interrupted at the
end of the transfer.

iFlowtrace™

The M6200 core has an option for a simple trace mechanism
called iFlowtrace. This mechanism only traces the instruction
PC, not data addresses or values. This simplification allows
the trace block to be smaller and the trace compression to be
more efficient. iFlowtrace memory can be configured as off-
chip, on-chip, or both.

iFlowtrace also offers special-event trace modes when
normal tracing is disabled, namely:

• Function Call/Return and Exception Tracing mode to
trace the PC value of function calls and returns and/or
exceptions and returns.

• Breakpoint Match mode traces the breakpoint ID of a
matching breakpoint and, for data breakpoints, the PC
value of the instruction that caused it.

MIPS32® M6200 Processor Core Family Datasheet, Revision 01.00 13

• Filtered Data Tracing mode traces the ID of a matching
data breakpoint, the load or store data value, access type
and memory access size, and the low-order address bits
of the memory access, which is useful when the data
breakpoint is set up to match a range of addresses.

• User Trace Messages. The user can instrument their code
to add their own 32-bit value messages into the trace by
writing to the two Cop0 UTM registers.

• Delta Cycle mode works in combination with the above
trace modes to provide a timestamp between stored
events. It reports the number of cycles that have elapsed
since the last message was generated and put into the
trace.

Secure Debug

Secure Debug improves security by disabling untrusted
debug access. The EJ_DisableProbeDebug signal disables all
debug functionality (including trace), with the exception of
an override for a probe to generate the Debug Interrupt
Exception, OciBrk. FDC remains enabled.

Testability

Testability for production testing of the core is supported
through the use of internal scan and memory BIST.

Internal Scan

Full mux-based scan for maximum test coverage is
supported, with a configurable number of scan chains. ATPG
test coverage can exceed 99%, depending on standard cell
libraries and configuration options.

Memory BIST

Memory BIST for the on-chip trace memory is optional.

User-specified Memory BIST

Memory BIST can be inserted with a CAD tool or other user-
specified method. Wrapper modules and special side-band
signal buses of configurable width are provided within the
core to facilitate this approach.

Build-Time Configuration Options

The M6200 core allows a number of features to be
customized based on the intended application. Table 5
summarizes the key configuration options that can be
selected when the core is synthesized and implemented.

For a core that has already been built, software can determine
the value of many of these options by checking an appropriate
register field. Refer to the MIPS32® M6200 Processor Core
Family Programmer’s Guide for a more complete description
of these fields. The value of some options that do not have a
functional effect on the core are not visible to software.

Table 5 CPU Build-time Configuration Options

Feature Options Software Visibility

Integer register file sets 1, 2, 4, 8 or 16 SRSCtlHSS

DSP Module Present or not Config3DSPP and

Config3DSP2P

Memory Protection Unit Present or not. If present, 1 - 16 regions N/A

Debug Controller via APB Port Present or not N/A

Fast Debug Channel (FDC) Present or not DCRFDCI

Instruction/data hardware breakpoints 0/0, 4/2, or 8/4 DCRInstBrk, IBSBCN

DCRDataBrk, DBSBCN

Hardware breakpoint trigger By address match, or
address match and address range

IBCnhwart and DBCnhwart

Complex breakpoints 0/0 or 8/4 DCRCBT

* These bits indicate the presence of an external block. Bits will not be set if interface is present, but block is not.

14 MIPS32® M6200 Processor Core Family Datasheet, Revision 01.00

Revision History

Performance Counters Present or not Config1PC

iFlowtrace hardware Present or not Config3ITL

iFlowtrace on-chip trace memory size 256B - 8MB ITCBRDP

iFlowtrace off-chip PIB Present or not IFCTLOfC

Coprocessor2 interface Present or not Config1C2*

Interrupt Controller (ICU) Present or not. If present, 8, 16, 32, 64, 128, 256 inter-
rupts, interrupt polarity and edge/level sensitivity, and
mapped shadow set value.

N/A

SRAM ECC Present or not ErrCtlEE

Parity on data and address bus Present or not ErrCtlPE

Interrupt synchronizers Present or not N/A

Interrupt Vector Offset Compute from Vector Input or Immediate Offset N/A

Table 5 CPU Build-time Configuration Options (Continued)

Feature Options Software Visibility

* These bits indicate the presence of an external block. Bits will not be set if interface is present, but block is not.

Revision Date Description

01.00 December 15, 2015 • Release of document for RC 1.0

MIPS32® M6200 Processor Core Family Datasheet, Revision 01.00 MD01092

Public. This publication contains proprietary information which is subject to change without
notice and is supplied ‘as is’, without any warranty of any kind.

Copyright © Wave Computing, Inc. All rights reserved.
www.wavecomp.ai

