

Document Number: MD01093
Revision 01.00

January 12, 2016

MIPS32® M6200 Processor Core Family
Programmer’s Guide

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

Public. This publication contains proprietary information which is subject to change without
notice and is supplied ‘as is’, without any warranty of any kind.

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 3

Table of Contents

Chapter 1: Introduction .. 14
1.1: Features .. 14
1.2: Architecture Overview ... 18
1.3: Pipeline Flow ... 18

1.3.1: I Stage: Instruction Fetch ... 20
1.3.2: R Stage: Register File Access ... 20
1.3.3: A Stage: Address Generation .. 21
1.3.4: E Stage: Execution... 21
1.3.5: M Stage: Memory Access .. 21
1.3.6: W Stage: Write ... 21

1.4: M6200 Required Logic Blocks... 21
1.4.1: Execution Unit .. 21
1.4.2: General Purpose Registers.. 22
1.4.3: Multiply/Divide Unit (MDU) ... 22
1.4.4: MDU with 32x32 DSP Multiplier with DSP Option.. 22
1.4.5: MDU with 32x16 High-Performance Multiplier ... 23
1.4.6: System Control Coprocessor (CP0)... 24
1.4.7: Interrupt Handling .. 25
1.4.8: GPR Shadow Registers ... 25
1.4.9: Modes of Operation.. 26
1.4.10: Memory Management Unit (MMU) .. 27
1.4.11: Fixed Mapping Translation (FMT) .. 27
1.4.12: SRAM Interface Controller ... 28
1.4.13: Hardware Reset ... 28
1.4.14: Power Management ... 29

1.5: Optional or Configurable Logic Blocks .. 30
1.5.1: Data Integrity.. 30
1.5.2: Memory Protection Unit.. 30
1.5.3: DSP Module ... 30
1.5.4: Coprocessor 2 Interface... 31
1.5.5: Debug Support ... 31
1.5.6: Interrupt Controller Unit (ICU) .. 31

1.6: Testability .. 32
1.6.1: Internal Scan.. 32
1.6.2: User-specified Memory BIST ... 32

1.7: Build-Time Configuration Options.. 32

Chapter 2: The MIPS® DSP Module .. 34
2.1: Additional Register State for the DSP Module... 34

2.1.1: HI/LO Registers.. 34
2.1.2: DSPControl Register.. 34

2.2: Software Detection of the DSP Module ... 36

Chapter 3: Memory Management of the M6200 Core .. 37
3.1: Introduction.. 37

3.1.1: Memory Management Unit (MMU) .. 37
3.2: Modes of Operation ... 38

4 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

3.2.1: Virtual Memory Segments.. 38
3.2.2: User Mode.. 40
3.2.3: Kernel Mode... 41
3.2.4: Debug Mode... 43

3.3: Fixed Mapping MMU ... 45
3.4: System Control Coprocessor... 48

Chapter 4: Exceptions and Interrupts in the M6200 Core... 49
4.1: Exception Conditions... 49
4.2: Exception Priority... 50
4.3: Interrupts ... 51

4.3.1: Interrupt Modes.. 51
4.3.2: Generation of Exception Vector Offsets for Vectored Interrupts .. 59
4.3.3: MCU ASE Enhancement for Interrupt Handling... 60

4.4: GPR Shadow Registers... 61
4.5: Exception Vector Locations ... 62
4.6: General Exception Processing .. 65
4.7: Debug Exception Processing .. 68
4.8: Exception Descriptions .. 69

4.8.1: Reset Exception .. 69
4.8.2: Soft Reset Exception ... 71
4.8.3: Debug Single Step Exception ... 72
4.8.4: Debug Interrupt Exception .. 73
4.8.5: Non-Maskable Interrupt (NMI) Exception/.. 73
4.8.6: Interrupt Exception .. 74
4.8.7: Debug Instruction Break Exception ... 75
4.8.8: Address Error Exception — Instruction Fetch/Data Access... 75
4.8.9: SRAM Interface Parity Error Exception.. 76
4.8.10: SRAM ECC Error Exception .. 76
4.8.11: Bus Error Exception — Instruction Fetch or Data Access.. 76
4.8.12: Protection Exception .. 77
4.8.13: Debug Software Breakpoint Exception .. 77
4.8.14: Execution Exception — System Call.. 78
4.8.15: Execution Exception — Breakpoint.. 78
4.8.16: Execution Exception — Reserved Instruction .. 78
4.8.17: Execution Exception — Coprocessor Unusable .. 79
4.8.18: Execution Exception — DSP Module State Disabled .. 79
4.8.19: Execution Exception — Coprocessor 2 Exception... 79
4.8.20: Execution Exception — Implementation-Specific 1 Exception... 80
4.8.21: Execution Exception — Integer Overflow... 80
4.8.22: Debug Data Break Exception... 80
4.8.23: Complex Break Exception.. 81

4.9: Exception Handling and Servicing Flowcharts .. 81

Chapter 5: CP0 Registers of the M6200 Core... 85
5.1: CP0 Register Summary... 85
5.2: CP0 Register Descriptions .. 86

5.2.1: UserLocal Register (CP0 Register 4, Select 2).. 87
5.2.2: HWREna Register (CP0 Register 7, Select 0) ... 88
5.2.3: BadVAddr Register (CP0 Register 8, Select 0).. 89
5.2.4: BadInstr Register (CP0 Register 8, Select 1) .. 89
5.2.5: BadInstrP Register (CP0 Register 8, Select 2) .. 90
5.2.6: Count Register (CP0 Register 9, Select 0) .. 91

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 5

5.2.7: Compare Register (CP0 Register 11, Select 0) ... 91
5.2.8: Status Register (CP0 Register 12, Select 0).. 92
5.2.9: IntCtl Register (CP0 Register 12, Select 1).. 96
5.2.10: SRSCtl Register (CP0 Register 12, Select 2) .. 100
5.2.11: SRSMap1 Register (CP0 Register 12, Select 3).. 102
5.2.12: View_IPL Register (CP0 Register 12, Select 4)... 103
5.2.13: SRSMap2 Register (CP0 Register 12, Select 5).. 104
5.2.14: Cause Register (CP0 Register 13, Select 0).. 105
5.2.15: View_RIPL Register (CP0 Register 13, Select 4) .. 109
5.2.16: NestedExc (CP0 Register 13, Select 5) ... 110
5.2.17: Exception Program Counter (CP0 Register 14, Select 0) .. 111
5.2.18: NestedEPC (CP0 Register 14, Select 2).. 112
5.2.19: Processor Identification (CP0 Register 15, Select 0) ... 113
5.2.20: EBase Register (CP0 Register 15, Select 1) ... 114
5.2.21: CDMMBase Register (CP0 Register 15, Select 2)... 115
5.2.22: Config Register (CP0 Register 16, Select 0).. 116
5.2.23: Config1 Register (CP0 Register 16, Select 1).. 118
5.2.24: Config2 Register (CP0 Register 16, Select 2).. 120
5.2.25: Config3 Register (CP0 Register 16, Select 3).. 120
5.2.26: Config4 Register (CP0 Register 16, Select 4).. 124
5.2.27: Config5 Register (CP0 Register 16, Select 5).. 125
5.2.28: Config7 Register (CP0 Register 16, Select 7).. 127
5.2.29: Load Linked Address (CP0 Register 17, Select 0)... 128
5.2.30: Debug Register (CP0 Register 23, Select 0) ... 128
5.2.31: User Trace Data1 Register (CP0 Register 23, Select 3)/User Trace Data2 Register (CP0 Register
24, Select 3) ... 133
5.2.32: Debug2 Register (CP0 Register 23, Select 6) ... 134
5.2.33: Debug Exception Program Counter Register (CP0 Register 24, Select 0) 134
5.2.34: Performance Counter Register (CP0 Register 25, select 0-3) ... 136
5.2.35: ErrCtl Register (CP0 Register 26, Select 0)... 141
5.2.36: CacheErr Register (CP0 Register 27, Select 0)... 142
5.2.37: CacheErrAddr Register (CP0 Register 27, Select 1) ... 144
5.2.38: ErrorEPC (CP0 Register 30, Select 0) ... 145
5.2.39: DeSave Register (CP0 Register 31, Select 0) ... 146
5.2.40: KScratchn Registers (CP0 Register 31, Selects 2 to 7)... 146

Chapter 6: Hardware and Software Initialization of the M6200 Core ... 148
6.1: Hardware-Initialized Processor State .. 148

6.1.1: Coprocessor 0 State .. 148
6.1.2: Bus State Machines ... 149
6.1.3: Static Configuration Inputs ... 149
6.1.4: Fetch Address.. 149

6.2: Software Initialized Processor State.. 149
6.2.1: Register File ... 149
6.2.2: Coprocessor 0 State .. 149

Chapter 7: Power Management of the M6200 Core ... 150
7.1: Register-Controlled Power Management .. 150
7.2: Instruction-Controlled Power Management ... 150

Chapter 8: Debug Support in the M6200 Core ... 152
8.1: APB Devices.. 152

6 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

8.2: Core APB Debug Registers... 152
8.2.1: Device Identification (IDCODE) Register ... 155
8.2.2: Implementation Register (IMPCODE) .. 155
8.2.3: ADDRESS Register ... 157
8.2.4: DATA Register ... 157
8.2.5: Fastdata ... 157
8.2.6: OCI CONTROL Register (OCR) .. 158
8.2.7: DRSEG_ADDR Register.. 163
8.2.8: DRSEG_DATA Register .. 164
8.2.9: PCSAMPLE Registers ... 164
8.2.10: FDSTATUS and FDDATA Registers.. 165

8.3: CP0 Debug Registers.. 166
8.4: Debug Control Register (DCR) Register ... 166
8.5: Hardware Breakpoints ... 170

8.5.1: Data Breakpoints.. 171
8.5.2: Complex Breakpoints ... 171
8.5.3: Conditions for Matching Breakpoints ... 172
8.5.4: Debug Exceptions from Breakpoints.. 175
8.5.5: Breakpoint Used as Triggerpoint.. 176
8.5.6: Instruction Breakpoint Registers .. 177
8.5.7: Data Breakpoint Registers ... 182
8.5.8: Complex Breakpoint Registers... 189

8.6: Complex Breakpoint Usage... 193
8.6.1: Checking for Presence of Complex Break Support.. 193
8.6.2: General Complex Break Behavior.. 194
8.6.3: Usage of Pass Counters .. 195
8.6.4: Usage of Tuple Breakpoints... 195
8.6.5: Usage of Priming Conditions.. 195
8.6.6: Usage of Data Qualified Breakpoints ... 196
8.6.7: Usage of Stopwatch Timers ... 196

8.7: Secure Debug.. 197
8.8: Performance Counters .. 197
8.9: iFlowtrace™... 197

8.9.1: A Simple Instruction-Only Tracing Scheme ... 198
8.9.2: Special Trace Modes ... 199
8.9.3: ITCB Overview... 202
8.9.4: ITCB iFlowtrace Interface... 203
8.9.5: TCB Storage Representation ... 204
8.9.6: ITCB Register Interface for Software Configurability ... 205
8.9.7: ITCB iFlowtrace Off-Chip Interface .. 208
8.9.8: Breakpoint-Based Enabling of Tracing... 209

8.10: PC/Data Address Sampling... 209
8.10.1: PC Sampling in Wait State... 210
8.10.2: Data Address Sampling ... 210

8.11: Fast Debug Channel (FDC)... 211
8.11.1: Common Device Memory Map... 211
8.11.2: Fast Debug Channel Interrupt.. 212
8.11.3: M6200 Core FDC Buffers... 212
8.11.4: Sleep mode.. 214
8.11.5: FDC TAP Register ... 214
8.11.6: Fast Debug Channel Registers .. 215

8.12: Examples of Debug Operations... 219

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 7

Chapter 9: MIPS32® Instruction Set Architecture ... 222
9.1: MIPS32® Release 6 ISA ... 222
9.2: CPU Instruction Formats ... 222
9.3: Load and Store Instructions... 225

9.3.1: Scheduling a Load Delay Slot .. 225
9.3.2: Load and Store Access Types ... 225
9.3.3: PC-relative Loads... 226

9.4: Computational Instructions .. 226
9.4.1: Cycle Timing for Multiply and Divide Instructions... 227
9.4.2: ALU Immediate and Three-Operand Instructions .. 227
9.4.3: Shift Instructions... 228
9.4.4: Multiply and Divide Instructions.. 228

9.5: Jump and Branch Instructions ... 229
9.5.1: Overview of Jump Instructions ... 229
9.5.2: Branch Instructions .. 229

9.6: Control Instructions.. 231
9.7: Coprocessor Instructions... 231
9.8: Miscellaneous Instructions .. 231

9.8.1: Conditional Select Instructions... 231
9.8.2: Prefetch Instruction .. 232
9.8.3: NOP Instructions.. 232

9.9: MCU ASE Instructions... 232
9.9.1: ACLR.. 232
9.9.2: ASET.. 232
9.9.3: IRET... 232
9.9.4: ASET/ACLR Unique Behaviors.. 233

Chapter 10: M6200 MIPS32® Processor Core Instructions .. 234
10.1: Understanding the Instruction Descriptions... 234
10.2: MIPS32® Instruction Set for the M6200 Core ... 234

ACLR... 240
ASET... 241
ACLR... 242
IRET .. 244
IRET .. 248
LL .. 252
SYNC .. 254
SC ... 255
WAIT ... 257

Chapter 11: microMIPS32™ Instruction Set Architecture .. 258
11.1: ISA Modes ... 258
11.2: Mode Switch .. 258
11.3: microMIPS Instructions.. 259

Appendix A: References .. 261

Appendix B: Revision History ... 263

8 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

List of Tables

Table 1.1: DSP-related Latencies and Repeat Rates ... 23
Table 1.2: High-Performance Integer Multiply/Divide Unit Latencies and Repeat Rates with DSP........................ 23
Table 1.3: High-Performance Integer Multiply/Divide Unit Latencies and Repeat Rates without DSP................... 24
Table 1.4: Reset Types... 29
Table 1.5: CPU Build-time Configuration Options... 32
Table 2.1: MIPS® DSP Module Control Register (DSPControl) Field Descriptions ... 34
Table 2.2: DSPControl ouflag Bits ... 35
Table 3.1: User Mode Segments .. 40
Table 3.2: Kernel Mode Segments ... 42
Table 3.3: Physical Address and Cache Attributes for dseg, dmseg, and drseg Address Spaces 44
Table 3.4: CPU Access to drseg Address Range ... 44
Table 3.5: CPU Access to dmseg Address Range ... 45
Table 3.6: Cacheability of Segments with Block Address Translation .. 45
Table 4.1: Priority of Exceptions ... 50
Table 4.2: Interrupt Modes.. 51
Table 4.3: Relative Interrupt Priority for Vectored Interrupt Mode... 54
Table 4.4: Exception Vector Offsets for Vectored Interrupts... 59
Table 4.5: Exception Vector Base Addresses when SI_UseExceptionBase = 0 .. 63
Table 4.6: Exception Vector Base Addresses when SI_UseExceptionBase = 1 .. 63
Table 4.7: Exception Vector Offsets ... 64
Table 4.8: Exception Vectors .. 64
Table 4.9: Value Stored in EPC, ErrorEPC, or DEPC on an Exception.. 65
Table 4.10: Debug Exception Vector Location.. 69
Table 4.11: Register States an Interrupt Exception .. 74
Table 4.12: CP0 Register States on an Address Exception Error... 75
Table 4.13: CP0 Register States on a SRAM Interface Parity Error Exception .. 76
Table 4.14: CP0 Register States on an SRAM ECC Error Exception... 76
Table 4.15: Register States on a Coprocessor Unusable Exception .. 79
Table 5.1: CP0 Registers.. 85
Table 5.2: CP0 Register R/W Field Types .. 87
Table 5.3: UserLocal Register Field Descriptions... 88
Table 5.4: HWREna Register Field Descriptions .. 88
Table 5.5: BadVAddr Register Field Description .. 89
Table 5.6: BadInstr Register Field Descriptions.. 90
Table 5.7: BadInstrP Register Field Descriptions ... 91
Table 5.8: Count Register Field Description ... 91
Table 5.9: Compare Register Field Description .. 92
Table 5.10: Status Register Field Descriptions... 93
Table 5.11: IntCtl Register Field Descriptions... 97
Table 5.12: SRSCtl Register Field Descriptions ... 100
Table 5.13: Sources for RSCtlCSS on an Exception or Interrupt ... 103
Table 5.14: SRSMap Register Field Descriptions... 103
Table 5.15: View_IPL Register Field Descriptions .. 104
Table 5.16: SRSMap Register Field Descriptions... 105
Table 5.17: Cause Register Field Descriptions... 105
Table 5.18: Cause Register ExcCode Field .. 109
Table 5.19: View_RIPL Register Field Descriptions ... 110

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 9

Table 5.20: NestedExc Register Field Descriptions.. 110
Table 5.21: EPC Register Field Description ... 112
Table 5.22: NestedEPC Register Field Descriptions .. 113
Table 5.23: PRId Register Field Descriptions ... 114
Table 5.24: EBase Register Field Descriptions .. 115
Table 5.25: CDMMBase Register Field Descriptions.. 116
Table 5.26: Config Register Field Descriptions... 117
Table 5.27: Cache Coherency Attributes .. 118
Table 5.28: Config1 Register Field Descriptions — Select 1 .. 119
Table 5.29: Config2 Register Field Descriptions — Select 1 .. 120
Table 5.30: Config3 Register Field Descriptions... 121
Table 5.31: Config4 Register Field Descriptions... 125
Table 5.32: Config5 Register Field Descriptions... 125
Table 5.33: Config7 Register Field Descriptions... 128
Table 5.34: LLAddr Register Field Descriptions ... 128
Table 5.35: Debug Register Field Descriptions .. 130
Table 5.36: UserTraceData1/UserTraceData2 Register Field Descriptions ... 134
Table 5.37: Debug2 Register Field Descriptions .. 134
Table 5.38: DEPC Register Field Description... 135
Table 5.39: Performance Counter Register Selects ... 136
Table 5.40: Performance Counter Control Register Field Descriptions .. 137
Table 5.41: Performance Counter Events Sorted by Event Number .. 137
Table 5.42: Performance Counter Event Descriptions Sorted by Event Type .. 139
Table 5.43: Performance Counter Count Register Field Descriptions .. 141
Table 5.44: Errctl Register Field Descriptions... 141
Table 5.45: CacheErr Register Field Descriptions for Correctable Error .. 142
Table 5.46: Error Location Specifier for SRAM Data Array (DTWS=00)... 143
Table 5.47: CacheErrAddr Register Field Descriptions .. 145
Table 5.48: ErrorEPC Register Field Description.. 146
Table 5.49: DeSave Register Field Description .. 146
Table 5.50: KScratchn Register Field Descriptions... 147
Table 8.1: Core Debug Register Address Map ... 152
Table 8.1: Core APB Debug Registers .. 153
Table 8.2: Device Identification Register .. 155
Table 8.3: Implementation Register Field Descriptions... 156
Table 8.4: OCI CONTROL Register Field Descriptions .. 159
Table 8.5: DCR Register Field Descriptions ... 167
Table 8.6: Addresses for Instruction Breakpoint Registers ... 177
Table 8.7: IBS Register Field Descriptions ... 177
Table 8.8: IBAn Register Field Descriptions ... 178
Table 8.9: IBMn Register Field Descriptions... 178
Table 8.10: IBASIDn Register Field Descriptions ... 179
Table 8.11: IBCn Register Field Descriptions ... 179
Table 8.12: IBCCn Register Field Descriptions... 180
Table 8.13: IBPCn Register Field Descriptions... 181
Table 8.14: Addresses for Data Breakpoint Registers .. 182
Table 8.15: DBS Register Field Descriptions.. 183
Table 8.16: DBAn Register Field Descriptions.. 183
Table 8.17: DBMn Register Field Descriptions ... 184
Table 8.18: DBASIDn Register Field Descriptions.. 184
Table 8.19: DBCn Register Field Descriptions.. 185
Table 8.20: DBVn Register Field Descriptions.. 186
Table 8.21: DBCCn Register Field Descriptions... 187

10 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

Table 8.22: DBPCn Register Field Descriptions ... 188
Table 8.23: DVM Register Field Descriptions ... 188
Table 8.24: Addresses for Complex Breakpoint Registers ... 189
Table 8.25: CBTC Register Field Descriptions ... 189
Table 8.27: Priming Conditions and Register Values for 6I/2D Configuration .. 191
Table 8.28: Priming Conditions and Register Values for 8I/4D Configuration .. 191
Table 8.26: PrCndA Register Field Descriptions... 191
Table 8.29: STCtl Register Field Descriptions .. 192
Table 8.30: STCtl Register Field Descriptions .. 193
Table 8.31: Data Bus Encoding .. 203
Table 8.32: Tag Bit Encoding.. 204
Table 8.33: Control/Status Register Field Descriptions .. 205
Table 8.34: ITCBTW Register Field Descriptions ... 207
Table 8.35: ITCBRDP Register Field Descriptions ... 208
Table 8.36: ITCBWRP Register Field Descriptions... 208
Table 8.37: drseg Registers that Enable/Disable Trace from Breakpoint-Based Triggers.................................... 209
Table 8.38: FDC TAP Register Field Descriptions.. 214
Table 8.39: FDC Register Mapping .. 215
Table 8.40: FDC Access Control and Status Register Field Descriptions .. 215
Table 8.41: FDC Configuration Register Field Descriptions ... 216
Table 8.42: FDC Status Register Field Descriptions... 217
Table 8.43: FDC Receive Register Field Descriptions.. 218
Table 8.45: FDTXn Address Decode .. 219
Table 8.44: FDC Transmit Register Field Descriptions... 219
Table 9.1: CPU Instruction Format Fields ... 222
Table 9.2: Byte Access Within a Word.. 225
Table 9.3: PC-relative Loads .. 226
Table 9.4: Address Computation and Large Constant Instructions .. 227
Table 9.5: Shift Instructions ... 228
Table 9.6: Multiply/Divide Instructions ... 228
Table 9.7: Compact Branch and Jump Instructions ... 229
Table 9.8: System Call and Breakpoint Instructions ... 231
Table 9.9: Trap-on-Condition Instructions Comparing Two Registers .. 231
Table 9.10: CPU Conditional Select Instructions .. 232
Table 9.11: NOP Instructions.. 232
Table 10.1: MIPS32 Instruction Set .. 234

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 11

List of Figures

Figure 1.1: MIPS32® M6200 Core Block Diagram .. 14
Figure 1.2: MIPS32® M6200 Core Pipeline ... 20
Figure 1.3: M6200 Core Virtual Address Map .. 27
Figure 1.4: Address Translation During SRAM Access with FMT Implementation ... 28
Figure 2.1: MIPS32® DSP Module Control Register (DSPControl) Format ... 34
Figure 3.1: Address Translation During SRAM Access ... 38
Figure 3.2: M6200 processor core Virtual Memory Map .. 39
Figure 3.3: User Mode Virtual Address Space ... 40
Figure 3.4: Kernel Mode Virtual Address Space ... 42
Figure 3.5: Debug Mode Virtual Address Space .. 44
Figure 3.6: FMT Memory Map (ERL=0) in the M6200 Processor Core ... 47
Figure 3.7: FMT Memory Map (ERL=1) in the M6200 Processor Core ... 48
Figure 4.1: Interrupt Generation for Vectored Interrupt Mode .. 55
Figure 4.2: Interrupt Generation for External Interrupt Controller Interrupt Mode .. 58
Figure 4.3: General Exception Handler (HW) .. 82
Figure 4.4: General Exception Servicing Guidelines (SW) .. 83
Figure 4.5: Reset, Soft Reset and NMI Exception Handling and Servicing Guidelines ... 84
Figure 5.1: UserLocal Register Format .. 88
Figure 5.2: HWREna Register Format .. 88
Figure 5.3: BadVAddr Register Format .. 89
Figure 5.4: BadInstr Register Format.. 90
Figure 5.5: BadInstrP Register Format ... 91
Figure 5.6: Count Register Format .. 91
Figure 5.7: Compare Register Format ... 92
Figure 5.8: Status Register Format ... 92
Figure 5.9: IntCtl Register Format... 96
Figure 5.10: SRSCtl Register Format ... 100
Figure 5.11: SRSMap Register Format... 103
Figure 5.12: View_IPL Register Format .. 103
Figure 5.13: SRSMap Register Format... 104
Figure 5.14: Cause Register Format... 105
Figure 5.15: View_RIPL Register Format ... 109
Figure 5.16: NestedExc Register Format.. 110
Figure 5.17: EPC Register Format ... 112
Figure 5.18: NestedEPC Register Format .. 112
Figure 5.19: PRId Register Format .. 114
Figure 5.20: EBase Register Format .. 115
Figure 5.21: CDMMBase Register Format.. 116
Figure 5.22: Config Register Format... 117
Figure 5.23: Config1 Register Format — Select 1 ... 119
Figure 5.24: Config2 Register Format — Select 2 .. 120
Figure 5.25: Config3 Register Format... 120
Figure 5.26: Config4 Register Format... 124
Figure 5.27: Config5 Register Format... 125
Figure 5.28: Config7 Register Format .. 128
Figure 5.29: LLAddr Register Format .. 128
Figure 5.30: Debug Register Format ... 130

12 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

Figure 5.31: User Trace Data1/User Trace Data2 Register Format .. 134
Figure 5.32: Debug2 Register Format ... 134
Figure 5.33: DEPC Register Format .. 135
Figure 5.34: Performance Counter Control Register .. 137
Figure 5.35: Performance Counter Count Register ... 141
Figure 5.36: ErrCtl Register Format ... 141
Figure 5.37: CacheErr Register for Correctable Error.. 142
Figure 5.38: CacheErrAddr Register.. 145
Figure 5.39: ErrorEPC Register Format ... 146
Figure 5.40: DeSave Register Format ... 146
Figure 5.41: KScratchn Register Format .. 146
Figure 8.1: Device Identification Register Format .. 155
Figure 8.2: Implementation Register Format ... 155
Figure 8.3: OCI CONTROL Register Format ... 158
Figure 8.4: PCSAMPLE1 .. 164
Figure 8.5: PCSAMPLE2 .. 164
Figure 8.6: FDSTATUS Debug Register ... 165
Figure 8.7: DCR Register Format ... 167
Figure 8.8: IBS Register Format .. 177
Figure 8.9: IBAn Register Format .. 178
Figure 8.10: IBMn Register Format .. 178
Figure 8.11: IBASIDn Register Format .. 179
Figure 8.12: IBCn Register Format .. 179
Figure 8.13: IBCCn Register Format ... 180
Figure 8.14: IBPCn Register Format .. 181
Figure 8.15: DBS Register Format ... 183
Figure 8.16: DBAn Register Format ... 183
Figure 8.17: DBMn Register Format .. 184
Figure 8.18: DBASIDn Register Format ... 184
Figure 8.19: DBCn Register Format .. 184
Figure 8.20: DBVn Register Format ... 186
Figure 8.21: DBCCn Register Format .. 187
Figure 8.22: DBPCn Register Format ... 188
Figure 8.23: DVM Register Format .. 188
Figure 8.24: CBTC Register Format ... 189
Figure 8.25: PrCndA Register Format ... 190
Figure 8.26: STCtl Register Format ... 192
Figure 8.27: STCnt Register Format .. 193
Figure 8.28: Trace Logic Overview ... 203
Figure 8.29: Control/Status Register... 205
Figure 8.30: ITCBTW Register Format ... 207
Figure 8.31: ITCBRDP Register Format ... 207
Figure 8.32: ITCBWRP Register Format... 208
Figure 8.33: FDC Overview ... 211
Figure 8.34: Fast Debug Channel Buffer Organization ... 213
Figure 8.35: FDC TAP Register Format.. 214
Figure 8.36: FDC Access Control and Status Register... 215
Figure 8.37: FDC Configuration Register.. 216
Figure 8.38: FDC Status Register ... 217
Figure 8.39: FDC Receive Register .. 218
Figure 8.40: FDC Transmit Register ... 218
Figure 9.1: Register (R-Type) CPU Instruction Format... 223
Figure 9.2: Immediate (I-Type) CPU Instruction Formats Summary... 223

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 13

Figure 9.3: Immediate (I-Type) Imm16 CPU Instruction Format ... 223
Figure 9.4: Immediate (I-Type) Off21 CPU Instruction Format ... 224
Figure 9.5: Immediate (I-Type) Off26 CPU Instruction Format ... 224
Figure 9.6: Immediate (I-Type) Off11 CPU Instruction Format ... 224
Figure 9.7: Immediate (I-Type) Off9 CPU Instruction Format .. 224
Figure 9.8: Jump (J-Type) CPU Instruction Format .. 224

1.1 Features

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 15

• Support for MIPS32® R6 architecture

• Support for microMIPS™ R6 ISA

• 32-bit Address and 64-bit wide Data Bus

• Data integrity features:

– Optional ECC on all instruction and data RAM structures

– Optional parity on data transmission busses

• The M6200 retains features from the microAptiv UC, including:

• 32-bit General Purpose Registers (GPR)

• Instruction and Data SRAM interfaces

• Memory Protection Unit

• Microcontroller Application Specific Extension (MCU ASE)

• Multiply/Divide Unit

• DSP Module (optional)

• Debug and profiling support

• Secure Debug

• Coprocessor interface

• Power management

• MIPS32 Architecture Features

• Vectored interrupts and support for external interrupt controller

• Programmable exception vector base

• Simple boot exception vector relocation via 2 externally controlled pins

• GPR shadow registers (1, 2, 4, 8, or 16 additional shadows can be optionally added to minimize latency for
interrupt handlers)

• Bit field manipulation instructions

• microMIPS32 Instruction Set Architecture Release 6

• microMIPS ISA reduces code size over MIPS32, while maintaining MIPS32 performance.

• Combining both 16-bit and 32-bit opcodes, microMIPS supports all MIPS32 instructions, with new opti-
mized encoding. Frequently used MIPS32 instructions are available as 16-bit instructions.

• Stack pointer implicit in instruction.

• MIPS32 assembly and ABI-compatible.

• Supports MIPS architecture Modules and ASEs.

• MCU™ ASE

 Introduction

16 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

• Increases the number of interrupt hardware inputs from 6 to 8 for Vectored Interrupt (VI) mode, and from 63
to 255 for External Interrupt Controller (EIC) mode.

• Separate priority and vector generation. 16-bit vector address is provided.

• Hardware assist combined with the use of Shadow Register Sets to reduce interrupt latency during an inter-
rupt’s prologue and epilogue.

• An interrupt return with automated interrupt epilogue handling instruction (IRET) improves interrupt
latency.

• Supports optional interrupt chaining.

• Two memory-to-memory atomic read-modify-write instructions (ASET and ACLR) eases commonly used
semaphore manipulation in microcontroller applications. Interrupts are automatically disabled during the
operation to maintain coherency.

• Memory Management Unit

• Simple Fixed Mapping Translation (FMT) mechanism

• ECC Support

• The ISRAM and DSRAM support optional single error correction and double error detection (SECDED)
with correction in software.

• Transmission Parity Support

• The ISRAM and DSRAM interfaces supports optional parity detection on transactions between master and
slave

• Memory Protection Unit

• Optional feature that improves system security by restricting access, execution, and trace capabilities from
untrusted code in predefined memory regions.

• Simple SRAM-Style Interface

• 32-bit address and 64-bit data

• Single or multi-cycle latencies

• Dual instruction and data interfaces

• Partially registered interface

• MIPS DSP Module (Revision 3.0)

• Support for MAC operations with four additional pairs of HI/LO accumulator registers (Ac0 - Ac3)

• Fractional data types (Q15, Q31) with rounding support

• Saturating arithmetic with overflow handling

• SIMD instructions operate on 2x16-bit or 4x8-bit operands simultaneously

• Separate MDU pipeline with full-sized hardware multiplier to support back-to-back operations

• The DSP Module is build-time configurable.

1.1 Features

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 17

• Multiply/Divide Unit (without DSP)

• Maximum issue rate of one 32x16 multiply per clock via on-chip 32x16 hardware multiplier array.

• Maximum issue rate of one 32x32 multiply every other clock

• Early-in iterative divide. Minimum 11 and maximum 34 clock latency (dividend (rs) sign extension-depen-
dent)

• Multiply/Divide Unit (with DSP configuration)

• Maximum issue rate of one 32x32 multiply per clock via on-chip 32x32 hardware multiplier array

• Maximum issue rate of one 32x32 multiply every clock

• Early-in iterative divide. Minimum 12 and maximum 38 clock latency (dividend (rs) sign extension-depen-
dent)

• Multi-Core Support

• External lock indication enables multi-processor semaphores based on LL/SC instructions

• External sync indication allows memory ordering

• Coprocessor 2 interface

• 64b data width interface to an external coprocessor

• Interrupt Controller Unit

• An optional feature that provides supports for up to 256 interrupts, configurable at build-time in options of 8,
16, 32, 64, 128, and 256 sources

• Interrupts are configurable as to polarity, level or edge sensitivity, and dual- or single-edge sampling

• Support for MCU ISA

• Includes 32-bit Watchdog timer

• Power Control

• Minimum frequency: 0 MHz

• Power-down mode (triggered by WAIT instruction)

• Debug/Profiling and iFlowtrace™ Mechanism

• CPU control with start, stop, and single stepping

• Virtual instruction and data address/value breakpoints

• Hardware breakpoint supports both address match and address range triggering

• Optional simple hardware breakpoints on virtual addresses; 8I/4D or 4I/2D breakpoints, or no breakpoints

• Optional complex hardware breakpoints with 8I/4D simple breakpoints

• iFlowtrace support for real-time instruction PC and special events

• PC and/or load/store address sampling for profiling

 Introduction

18 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

• Performance Counters

• Support for Fast Debug Channel (FDC)

• Optional trace conversion block (PDT2ATB) converts iFlowtrace signals to ATB interface signals

• Secure Debug

• An optional feature that disables access via the APB in an untrusted environment

• Testability

• Full scan design achieves test coverage in excess of 99% (dependent on library and configuration options)

1.2 Architecture Overview

The M6200 core contains both required and optional blocks, as shown in Figure 1.1. Required blocks must be imple-
mented to remain MIPS-compliant. Optional blocks can be added to the M6200 core based on the needs of the imple-
mentation.

The required blocks are as follows:

• Instruction Decode

• Execution Unit

• General Purpose Registers (GPR)

• Multiply/Divide Unit (MDU)

• System Control Coprocessor (CP0)

• Memory Management Unit (MMU)

• I/D SRAM Interfaces

• Power Management

Optional or configurable blocks include:

• DSP (integrated with MDU)

• Memory Protection Unit (MPU)Coprocessor 2 interface

• Interrupt Controller Unit (ICU)

• Debug/Trace/Profiling with optional APB Debug, Hardware Breakpoints, PC Sampling, Performance Coun-
ters, Fast Debug Channel, and iFlowtrace

1.3 Pipeline Flow

The M6200 core implements a 6-stage pipeline. The pipeline allows the processor to achieve high frequency while
minimizing device complexity, reducing both cost and power consumption.

The M6200 core pipeline consists of six stages:

• Instruction (I Stage)

1.3 Pipeline Flow

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 19

• Register (R Stage)

• Align (A Stage)

• Execution (E Stage)

• Memory (M Stage)

• Write (W stage)

The M6200 core implements a bypass mechanism that allows the result of an operation to be forwarded directly to the
instruction that needs it without having to write the result to the register and then read it back.

Figure 1.2 shows a diagram of the M6200 core pipeline .

1.4 M6200 Required Logic Blocks

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 21

1.3.3 A Stage: Address Generation

• Data access addresses are calculated.

• Instructions are fully decoded

• Multiplication Booth recode is performed.

1.3.4 E Stage: Execution

• Branch evaluation is performed, causing a redirect if the instruction branches.

• Arithmetic, logic, and multiplication operations are performed. Depending on the size of the operands, the multi-
plication operation may be double pumped.

• Division uses an iterative sequence, and is non-blocking until an instruction uses the division result.

• Fixed mapping translation is used for cores without TLB support

1.3.5 M Stage: Memory Access

• Data access is performed for load and store instructions.

• On cacheable accesses, store instructions are written to internal write buffers, where the data will be written to
external memory as soon as the interface is free or idle.

• On uncacheable accesses, store instructions obeys strongly-ordered memory consistency rules by stalling until
the write is the oldest instruction in the pipeline before writing to the external memory.

1.3.6 W Stage: Write

• Exceptions are prioritized and flagged.

• Data reads are aligned before writing to the register file.

1.4 M6200 Required Logic Blocks

The required logic blocks of the M6200 core (Figure 1.1) are defined in the following subsections.

1.4.1 Execution Unit

The M6200 core execution unit implements a load/store architecture with single-cycle ALU operations (logical, shift,
add, subtract) and an autonomous multiply/divide unit.

 The execution unit includes:

• Single cycle Arithmetic Logic Unit (ALU) for performing arithmetic, bitwise logical operations and branch
target calculation.

• Adder for load/store address calculation

 Introduction

22 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

• Address unit for calculating the next PC and next fetch address selection muxes.

• Load Aligner.

• Shifter and Store Aligner.

• Branch condition comparator.

• Bypass muxes to advance result between two instructions with data dependency.

• Leading Zero/One detect unit for implementing the CLZ and CLO instructions.

• Read-modify-write control logic implementing atomic instructions defined in the MCU ASE.

• Actual execution of the Atomic Instructions defined in the MCU ASE.

• A separate DSP ALU and Logic block for performing part of DSP Module instructions, such as arithme-
tic/shift/compare operations when the DSP function is configured.

1.4.2 General Purpose Registers

The M6200 core contains thirty-two 32-bit general-purpose registers used for integer operations and address calcula-
tion. Optionally, 1, 2, 4, 8, or 16 additional register file shadow sets (each containing thirty-two registers) can be
added to minimize context switching overhead during interrupt/exception processing. The register file is flop-based
and is fully bypassed to minimize operation latency in the pipeline.

1.4.3 Multiply/Divide Unit (MDU)

The M6200 core includes a multiply/divide unit (MDU) that contains a separate, dedicated pipeline for integer multi-
ply/divide operations and DSP Module multiply instructions (with DSP option). This pipeline operates in parallel
with the integer unit (IU) pipeline and does not stall when the IU pipeline stalls. This allows the long-running MDU
operations to be partially masked by system stalls and/or other integer unit instructions.

The MIPS architecture defines that the result of a multiply or divide operation be placed in general-purpose registers
(without DSP option) or one of four pairs of HI and LO registers (with DSP enabled).

1.4.4 MDU with 32x32 DSP Multiplier with DSP Option

With the DSP configuration option enabled, the MDU supports execution of one 16x16, 32x16, or 32x32 multiply or
multiply-accumulate operation every clock cycle with the built in 32x32 multiplier array. The multiplier is shared
with DSP Module operations.

The MDU also implements various shift instructions operating on the HI/LO register and multiply instructions as
defined in the DSP Module. It supports all the data types required for this purpose and includes four extra HI/LO reg-
isters as defined by the Module.

1.4 M6200 Required Logic Blocks

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 23

Table 1.1 lists the latencies (number of cycles for an instruction to propagate from the beginning to the end of the
core’s pipeline) and repeat rates (throughput without data dependency) for the DSP multiply and dot-product opera-
tions. The approximate latencies and repeat rates are listed in terms of pipeline clocks.

1.4.5 MDU with 32x16 High-Performance Multiplier

Without the DSP option, the high-performance MDU consists of a 32x16 Booth-recoded multiplier, a divide state
machine, and the necessary multiplexers and control logic. The first number shown (‘32’ of 32x16) represents the rs
operand. The second number (‘16’ of 32x16) represents the rt operand. The M6200 core only checks the value of the
rt operand to determine how many times the operation must pass through the multiplier. The 16x16 and 32x16 opera-
tions pass through the multiplier once. A 32x32 operation passes through the multiplier twice.

The MDU supports execution of one 16x16 or 32x16 multiply or multiply-accumulate operation every clock cycle;
32x32 multiply operations can be issued every other clock cycle. Appropriate interlocks are implemented to stall the
issuance of back-to-back 32x32 multiply operations. The multiply operand size is automatically determined by logic
built into the MDU.

Table 1.2 and Table 1.3 list the repeat rate (how often the operation can be reissued when there is no data depen-
dency) and latency (number of cycles until a result is available) for the multiply and divide instructions. The approx-
imate latency and repeat rates are listed in terms of pipeline clocks.

Table 1.1 DSP-related Latencies and Repeat Rates

Opcode Latency Repeat
Rate

Multiple and dot-product without satura-
tion after accumulation

6 1

Multiple and dot-product with saturation
after accumulation (word)

6 1

Multiply and dot-product with saturation
after accumulation (doubleword)

7 1

Accumulator shifter uses immediately pre-
vious multiply result.

7 2

Multiply without accumulation 6 1

Table 1.2 High-Performance Integer Multiply/Divide Unit Latencies and Repeat Rates with DSP

Opcode

Operand
Size

(mul rt)
(div rs) Latency

Repeat
Rate

MUL, MUH,
MULU, MUHU
(GPR destination)

16 bits 6 1

32 bits 6 1

 Introduction

24 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

1.4.6 System Control Coprocessor (CP0)

In the MIPS architecture, CP0 is responsible for the virtual-to-physical address translation, the exception control sys-
tem, the processor’s diagnostics capability, the operating modes (kernel, user, and debug), and whether interrupts are
enabled or disabled. Configuration information, such as presence of build-time options, such as microMIPS or
Coprocessor 2 interface, is also available by accessing the CP0 registers.

Coprocessor 0 also contains the logic for identifying and managing exceptions. Exceptions can be caused by a variety
of sources, including boundary cases in data, external events, or program errors.

DIV, MOD/ DIVU,
MODU
(GPR destination)

4 bits 11/10 8/7

8 bits 15/14 12/11

16 bits 23/22 20/19

24 bits 31/30 28/27

32 bits 39/38 36/35

MADD/MADDU,
MSUB/MSUBU
(with DSP)

GPR is
32-bit

Accumula-
tor is 64-bit

6 1

Table 1.3 High-Performance Integer Multiply/Divide Unit Latencies and Repeat Rates without DSP

Opcode

Operand
Size

(mul rt)
(div rs) Latency

Repeat
Rate

MUL, MUH,
MULU, MUHU
(GPR destination)

16 bits 6
(I-R-A-E-M-

W)

1

32 bits 7
(I-R-A-E-E-

M-W,
32x16 array is

in E)

2

DIV, MOD/DIVU,
MODU
(GPR destination)

4 11/10 8/7

8 bits 15/14 12/11

16 bits 23/22 20/19

24 bits 31/30 28/27

32 bits 39/38 36/35

Table 1.2 High-Performance Integer Multiply/Divide Unit Latencies and Repeat Rates with DSP

Opcode

Operand
Size

(mul rt)
(div rs) Latency

Repeat
Rate

1.4 M6200 Required Logic Blocks

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 25

1.4.7 Interrupt Handling

The M6200 core includes support for eight hardware interrupt pins, two software interrupts, and a timer interrupt.
These interrupts can be used in any of three interrupt modes, as defined by Release 2 of the MIPS32 Architecture:

• Interrupt compatibility mode, which acts identically to that in an implementation of Release 1 of the Archi-
tecture.

• Vectored Interrupt (VI) mode, which adds the ability to prioritize and vector interrupts to a handler dedicated
to that interrupt, and to assign a GPR shadow set for use during interrupt processing. The presence of this
mode is denoted by the VInt bit in the Config3 register. This mode is architecturally optional; but it is always
present on the M6200 core, so the VInt bit will always read as a 1 for the M6200 core.

• External Interrupt Controller (EIC) mode, which redefines the way in which interrupts are handled to pro-
vide full support for an external interrupt controller handling prioritization and vectoring of interrupts. The
presence of this mode is indicated by the VEIC bit in the Config3 register. Again, this mode is architecturally
optional. On the M6200 core, the VEIC bit is set externally by the static input SI_EICPresent, which allows
system logic to indicate the presence of an external interrupt controller.

The reset state of the processor is interrupt compatibility mode, such that processors supporting Release 6 of the
Architecture (such as the M6200 core) are fully compatible with implementations of Release 1 of the Architecture.

VI or EIC interrupt modes can be combined with the optional shadow registers to specify which shadow set should be
used on entry to a particular vector. The shadow registers improve interrupt latency by avoiding the need to save con-
text when invoking an interrupt handler.

In the M6200 core, interrupt latency is reduced by:

• Speculative interrupt-vector prefetching during the pipeline flush.

• Interrupt Automated Prologue (IAP) in hardware: Shadow Register Sets remove the need to save GPRs, and
IAP removes the need to save specific Control Registers when handling an interrupt.

• Interrupt Automated Epilogue (IAE) in hardware: Shadow Register Sets remove the need to restore GPRs,
and IAE removes the need to restore specific Control Registers when returning from an interrupt.

• Allow interrupt chaining. When servicing an interrupt and interrupt chaining is enabled, there is no need to
return from the current Interrupt Service Routine (ISR) if there is another valid interrupt pending to be ser-
viced. The control of the processor can jump directly from the current ISR to the next ISR without IAE and
IAP.

• Simple exception vector relocation via the externally controlled pin SI_Offset.

1.4.8 GPR Shadow Registers

The MIPS32 Architecture optionally removes the need to save and restore GPRs on entry to high-priority interrupts
or exceptions, and to provide specified processor modes with the same capability. This is done by introducing multi-
ple copies of the GPRs, called shadow sets, and allowing privileged software to associate a shadow set with entry to
kernel mode via an interrupt vector or exception. The normal GPRs are logically considered shadow set zero.

The number of GPR shadow sets is a build-time option. The M6200 core allows 1 (the normal GPRs), 2, 4, 8, or 16
shadow sets. The highest number actually implemented is indicated by the SRSCtlHSS field. If this field is zero, only
the normal GPRs are implemented.

 Introduction

26 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

Shadow sets are new copies of the GPRs that can be substituted for the normal GPRs on entry to kernel mode via an
interrupt or exception. Once a shadow set is bound to a kernel-mode entry condition, references to GPRs operate
exactly as one would expect, but they are redirected to registers that are dedicated to that condition. Privileged soft-
ware may need to reference all GPRs in the register file, even specific shadow registers that are not visible in the cur-
rent mode, and the RDPGPR and WRPGPR instructions are used for this purpose. The CSS field of the SRSCtl register
provides the number of the current shadow register set, and the PSS field of the SRSCtl register provides the number of
the previous shadow register set that was current before the last exception or interrupt occurred.

If the processor is operating in VI interrupt mode, binding of a vectored interrupt to a shadow set is done by writing to
the SRSMap register. If the processor is operating in EIC interrupt mode, the binding of the interrupt to a specific
shadow set is provided by the external interrupt controller and is configured in an implementation-dependent way.
Binding of an exception or non-vectored interrupt to a shadow set is done by writing to the ESS field of the SRSCtl reg-
ister. When an exception or interrupt occurs, the value of SRSCtlCSS is copied to SRSCtlPSS, and SRSCtlCSS is set to the
value taken from the appropriate source. On an ERET, the value of SRSCtlPSS is copied back into SRSCtlCSS to restore
the shadow set of the mode to which control returns.

1.4.9 Modes of Operation

The M6200 core implements three modes of operation:

• User mode is most often used for applications programs.

• Kernel mode is typically used for handling exceptions and operating-system kernel functions, including CP0
management and I/O device accesses.

• Debug mode is used during system bring-up and software development. Refer to the Chapter 8, “Debug
Support in the M6200 Core” on page 152 for more information on debug mode.

Figure 1.3 shows the virtual address map of the MIPS Architecture.

1.4 M6200 Required Logic Blocks

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 27

Figure 1.3 M6200 Core Virtual Address Map

1.4.10 Memory Management Unit (MMU)

The M6200 core contains a simple Fixed Mapping Translation (FMT) MMU that interfaces between the execution
unit and the SRAM Controller.

1.4.11 Fixed Mapping Translation (FMT)

A FMT is smaller and simpler than the full Translation Lookaside Buffer (TLB) style MMU found in other MIPS
cores. Like a TLB, the FMT performs virtual-to-physical address translation and provides attributes for the different
segments. Those segments that are unmapped in a TLB implementation (kseg0 and kseg1) are translated identically
by the FMT.

Figure 1.4 shows how the FMT is implemented in the M6200 core.

kuseg

kseg0

kseg1

kseg2

kseg3

0x00000000

0x7FFFFFFF

0x80000000

0x9FFFFFFF

0xA0000000

0xBFFFFFFF

0xC0000000

0xDFFFFFFF

0xE0000000

0xF1FFFFFF

Kernel Virtual Address Space

Unmapped, 512 MB
Kernel Virtual Address Space

Uncached

Unmapped, 512 MB
Kernel Virtual Address Space

User Virtual Address Space

1. This space is mapped to memory in user or kernel mode,
 and by the Debug module in debug mode.

0xFF200000
0xFF3FFFFF
0xFF400000

0xFFFFFFFF

Memory/Debug1

Mapped, 2048 MB

Fixed Mapped, 512 MB

Fixed Mapped

Fixed Mapped

1.4 M6200 Required Logic Blocks

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 29

The primary difference between the two reset signals is that SI_WarmResetN allows the core to enter debug mode at
the end of reset through the DbgBOOT mechanism. With SI_ColdResetN, that bootmode is not allowed, and the core
will begin fetching code in Kernel mode at the end of reset. The reset behavior is summarized in Table 1.4.

One or both of the reset signals must be asserted at power-on or whenever hardware initialization of the core is
desired. A cold reset typically occurs when the machine is first turned on. A warm reset usually occurs when the
machine is already on, and the system is rebooted. SI_WarmResetN sets a bit in the Status register; this bit could be
used by software to distinguish between the two reset signals, if desired.

1.4.14 Power Management

The M6200 core offers a number of power management features, including low-power design, active power manage-
ment, and power-down modes of operation. The core is a static design that supports slowing or halting the clocks,
which reduces system power consumption during idle periods.

The M6200 core provides two mechanisms for system-level low-power support:

• Register-controlled power management

• Instruction-controlled power management

1.4.14.1 Register-Controlled Power Management

The power-management function is supported by three bits,StatusEXL, StatusERL, and DebugDM support the
power-management function, which allows the user to change the power state if an exception or error occurs while
the core is in a low-power state. Depending on what type of exception is taken, one of these three bits will be asserted
and reflected on the SI_EXL, SI_ERL, or EJ_DebugM outputs. The external agent can look at these signals and deter-
mine whether or not to leave the low-power state to service the exception.

Three bits, StatusEXL, StatusERL, and DebugDM, support the power-management function by allowing the user to
change the power state if an exception or error occurs while the core is in a low-power state. Depending on what type
of exception is taken, one of these three bits will be asserted and reflected on the SI_EXL, SI_ERL, or EJ_DebugM
outputs. The external agent can look at these signals and determine whether to leave the low-power state to service
the exception.

The following four power-down signals are part of the system interface and change state as the corresponding bits in
the CP0 registers are set or cleared:

• The SI_EXL signal represents the state of the EXL bit (1) in the CP0 Status register.

• The SI_ERL signal represents the state of the ERL bit (2) in the CP0 Status register.

• The EJ_DebugM signal represents the state of the DM bit (30) in the CP0 Debug register.

Table 1.4 Reset Types

SI_WarmResetN SI_ColdResetN Action

1 1 Normal operation, no reset.

0 1 Reset exception; sets
StatusSR bit.

X 0 Reset exception.

 Introduction

30 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

1.4.14.2 Instruction-Controlled Power Management

The second mechanism for invoking power-down mode is by executing the WAIT instruction. When the WAIT
instruction is executed, the internal clock is suspended; however, the internal timer and some of the input pins
(SI_Int[7:0], SI_NMI, SI_WarmResetN, and SI_ColdResetN) continue to run. Once the CPU is in instruction-con-
trolled power management mode, any interrupt, NMI, or reset condition causes the CPU to exit this mode and resume
normal operation.

The M6200 core asserts the SI_Sleep signal, which is part of the system interface bus, whenever the WAIT instruc-
tion is executed. The assertion of SI_Sleep indicates that the clock has stopped and the M6200 core is waiting for an
interrupt.

1.5 Optional or Configurable Logic Blocks

The M6200 core contains several optional or configurable logic blocks, shown as shaded in the block diagram in
Figure 1.1.

1.5.1 Data Integrity

The M6200 core optionally supports single-error correction and double-error detection (SECDED). Errors are
reported in CP0 registers and rely on software correction. ECC is generated or checked for valid byte lanes.

In addition to ECC protection, the M6200 core also offers data integrity protection on uncached data transmissions.
Parity is generated and checked for every 8 bits of data transferred, and for every 32 bits of address transferred.

1.5.2 Memory Protection Unit

The Memory Protection Unit can be configured to have from 1 to 16 memory protection regions. Each region is
enabled by registers that define the address, size, and protection of each memory region. The Memory Protection Unit
control registers are implemented by CDMM (Common Device Memory Map) registers. After they have been pro-
grammed, these control registers can be locked to prohibit later modifications. Once programmed, a Protection
Exception will be triggered when an Instruction Fetch or Data Access matches the address of the protected memory
region or any modification of the EBase (base address of exception vectors) register was attempted. Each protected
region can also disable the iFlowtrace capability. Typically, the Memory Protection Unit improves system security by
disabling access to bootcode and preventing execution of non-trusted kernel mode code.

1.5.3 DSP Module

The M6200 core implements an optional DSP Module to benefit a wide range of DSP, Media, and DSP-like algo-
rithms. The DSP module is highly integrated with the Execution Unit and the MDU in order to share common logic
and to include support for operations on fractional data types, saturating arithmetic, and register SIMD operations.
Fractional data types Q15 and Q31 are supported. Register SIMD operations can perform up to four simultaneous
add, subtract, or shift operations and two simultaneous multiply operations.

In addition, the DSP Module includes some key features that efficiently address specific problems often encountered
in DSP applications. These include, for example, support for complex multiply, variable-bit insert and extract, and
implementation and use of virtual circular buffers. The extension also makes available four additional sets of HI-LO
accumulators to better facilitate common accumulate functions such as filter operation and convolutions.

1.5 Optional or Configurable Logic Blocks

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 31

1.5.4 Coprocessor 2 Interface

The M6200 core can be configured to have an interface for an on-chip coprocessor. This coprocessor can be tightly
coupled to the processor core, allowing high-performance solutions integrating a graphics accelerator or DSP, for
example.

The coprocessor interface is extensible and standardized on MIPS cores, allowing for design reuse. The M6200 core
supports a subset of the full coprocessor interface standard: 64b data transfer, no Coprocessor 1 support, and single
issue in-order data transfer to coprocessor.

The coprocessor interface is designed to ease integration with customer IP. The interface allows high-performance
communication between the core and coprocessor. There are no late or critical signals on the interface.

1.5.5 Debug Support

The M6200 core provides for an optional Debug interface via the MIPS Debug Hub (MDH) and Advanced Peripheral
Bus (APB) interface. MDH provides the capability for connection to a JTAG or APB compatible debug system for
improved debug performance and support for multi-core systems. For more information, refer to the MIPS® Debug
Hub Technical Reference Manual [6].

The M6200 core also provides a special Debug mode of operation, in addition to the standard User mode and Kernel
modes of operation. Debug mode is entered after a debug exception is taken and continues until a debug exception
return (DERET) instruction is executed. During this time, the processor executes the debug exception handler rou-
tine.

1.5.6 Interrupt Controller Unit (ICU)

This release includes the Interrupt Controller Unit (ICU). The ICU is a configurable IP that supports the following
features:

• Accepts up to 256 interrupt sources configurable at build-time in options of 8, 16, 32, 64, 128 and 256 sources.

• Supports MCU ASE where output drives a requested interrupt priority level.

• Distributes (hardwired) interrupt sources to the core.

• Backward compatibility with pre-defined MIPS Technologies interrupt modes, configurable by software.

• Supports interrupt source sensitivity (level-positive, level-negative, edge-positive, edge-negative, dual-edge-sen-
sitive) at build-time. All sources are normalized to positive, level-sensitive signals.

• Interrupt Pending mask feature

• Interrupt sources are mapped to SI_Int[7:0] or NMI. Mapping is software-controlled, and control registers are
extended to reflect the widening of the SI_Int output bus.

• A single 32-bit watch-dog timer

• Supports EIC Shadow set use in EIC interrupt mode capability. Shadow set values are hardwired (a build-time
option)

The ICU is described in detail in the MIPS® Interrupt Controller User's Guide [17].

 Introduction

32 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

1.6 Testability

Testability for production testing of the core is supported through the use of internal scan and memory BIST.

1.6.1 Internal Scan

Full mux-based scan for maximum test coverage is supported, with a configurable number of scan chains. ATPG test
coverage can exceed 99%, depending on standard cell libraries and configuration options.

1.6.2 User-specified Memory BIST

Memory BIST can be inserted with a CAD tool or other user-specified method. Wrapper modules and special
side-band signal buses of configurable width are provided within the core to facilitate this approach.

1.7 Build-Time Configuration Options

The M6200 core allows a number of features to be customized based on the intended application. Table 1.5 summa-
rizes the key configuration options that can be selected when the core is synthesized and implemented.

For a core that has already been built, software can determine the value of many of these options by checking an
appropriate register field. Refer to the MIPS32® M6200 Processor Core Family Programmer’s Guide for a more
complete description of these fields. The value of some options that do not have a functional effect on the core are not
visible to software.

Table 1.5 CPU Build-time Configuration Options

Feature Options Software Visibility

Integer register file sets 1, 2, 4, 8 or 16 SRSCtlHSS

DSP Module Present or not Config3DSPP and
Config3DSP2P

Memory Protection Unit Present or not. If present 1 - 16 regions N/A

Debug Controller via APB Port Present or not N/A

Fast Debug Channel (FDC) Present or not DCRFDCI

Instruction/data hardware breakpoints 0/0, 4/2, or 8/4 DCRInstBrk, IBSBCN
DCRDataBrk, DBSBCN

Hardware breakpoint trigger By address match, or
address match and address range

BCnhwart and DBCnhwart

Complex breakpoints 0/0 or 8/4 DCRCBT

Performance Counters Present or not Config1PC

iFlowtrace hardware Present or not Config3ITL

iFlowtrace on-chip trace memory size 256B - 8MB ITCBRDP

* These bits indicate the presence of an external block. Bits will not be set if interface is present, but block is not.

1.7 Build-Time Configuration Options

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 33

iFlowtrace off-chip PIB Present or not IFCTLOfC

Coprocessor2 interface Present or not Config1C2*

Interrupt Controller (ICU) Present or not. If present, 8, 16, 32, 64, 128, 256 inter-
rupts, interrupt polarity and edge/level sensitivity, and
mapped shadow set value.

N/A

SRAM ECC Present or not ErrCtlEE

Parity on data and address bus Present or not ErrCtlPE

Interrupt synchronizers Present or not N/A

Interrupt Vector Offset Compute from Vector Input or Immediate Offset N/A

Table 1.5 CPU Build-time Configuration Options (Continued)

Feature Options Software Visibility

* These bits indicate the presence of an external block. Bits will not be set if interface is present, but block is not.

Chapter 2

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 34

The MIPS® DSP Module

The M6200 includes support for the MIPS DSP Module Revision 3 that provides enhanced performance capabilities
for a wide range of signal-processing applications, with computational support for fractional data types, SIMD, satu-
ration, and other operations that are commonly used in these applications.

Refer to MIPS® Architecture For Programmers Volume IV-e [15] or [15] for a general description of the DSP Mod-
ule and detailed descriptions of the DSP instructions. Additional programming information is contained in Five Meth-
ods of Utilizing the MIPS® DSP Module [18], and Efficient DSP Module Programming in C: Tips and Tricks [18].

2.1 Additional Register State for the DSP Module

The DSP Module defines four accumulator registers and one additional control/status register, as described below.
These registers require the operating system to recognize the presence of the DSP Module and to include these addi-
tional registers in the context save and restore operations.

2.1.1 HI/LO Registers

The DSP Module includes four HI/LO accumulator registe1fcr pairs (ac0, ac1, ac2, and ac3). These registers improve
the parallelization of independent accumulation routines—for example, filter operations, convolutions, etc. DSP
instructions that target the accumulators use two instruction bits to specify the destination accumulator.

2.1.2 DSPControl Register

The DSPControl register contains control and status information used by DSP instructions. Figure 2.1 illustrates the
bits in this register, and Table 2.1 describes their usage.

Figure 2.1 MIPS32® DSP Module Control Register (DSPControl) Format

Table 2.1 MIPS® DSP Module Control Register (DSPControl) Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

0 31:28 Reserved. Used in the MIPS64 architecture but not used
in the MIPS32 architecture. Must be written as zero;
returns zero on read.

0 0 Required

scount
31 06

ouflag
7

0
121516

ccond pos
24 23 13

c
14

0
2728 5

0EFI

2.1 Additional Register State for the DSP Module

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 35

The bits of the overflow flag ouflag field in the DSPControl register are set by a number of instructions, as described
in Table 2.2. These bits are sticky and can be reset only by an explicit write to these bits in the register (using the
WRDSP instruction).

ccond 27:24 Condition code bits set by compare instructions. The
compare instruction sets the right-most bits as required
by the number of elements in the vector compare. Bits
not set by the instruction remain unchanged.

R/W 0 Required

ouflag 23:16 This field is written by hardware when certain instruc-
tions overflow or underflow and may have been satu-
rated. See Table 2.2 for a full list of which bits are set by
what instructions.

R/W 0 Required

EFI 14 Extract Fail Indicator. This bit is set to 1 when an EXTP,
EXTPV, EXTPDP, or EXTPDP instruction fails. These
instructions fail when there are insufficient bits to
extract, that is, when the value of pos in DSPControl is
less than the value of size specified in the instruction.
This bit is not sticky, so each invocation of one of the
four instructions will reset the bit depending on whether
or not the instruction failed.

R/W 0 Required

c 13 Carry bit. This bit is set and used by special add instruc-
tions that implement a 64-bit add across two GPRs. The
ADDSC instruction sets the bit and the ADDWC
instruction uses this bit.

R/W 0 Required

scount 12:7 This field is for use by the INSV instruction. The value
of this field is used to specify the size of the bit field to
be inserted.

R/W 0 Required

pos 5:0 This field is used by the variable insert instructions
INSV to specify the insert position.
It is also used to indicate the extract position for the
EXTP, EXTPV, EXTPDP, and EXTPDPV instructions.
The decrement pos (DP) variants of these instructions on
completion will have decremented the value of pos (by
the size amount).
The MTHLIP instruction will increment the pos value by
32 after copying the value of LO to HI.

R/W 0 Required

0 15:13 Must be written as zero; returns zero on read. 0 0 Reserved

Table 2.2 DSPControl ouflag Bits

Bit Number Description

16 This bit is set when the destination is accumulator (HI-LO pair) zero, and an operation overflow
or underflow occurs. These instructions are: DPAQ_S, DPAQ_SA, DPSQ_S, DPSQ_SA,
DPAQX_S, DPAQX_SA, DPSQX_S, DPSQX_SA, MAQ_S, MAQ_SA and MULSAQ_S.

17 Same instructions as above, when the destination is accumulator (HI-LO pair) one.

Table 2.1 MIPS® DSP Module Control Register (DSPControl) Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

 The MIPS® DSP Module

36 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

2.2 Software Detection of the DSP Module

The presence of the MIPS DSP Module Revision 3 in the M6200 core is indicated by five static CP0 register bits. In
the Config register, the three AR (Architecture Revision) bits indicate the implementation of Revision 6 of the MIPS32
architecture; in the Config3 register, the DSPP (DSP Present) bit indicates the presence of the DSP Module, and the
DSP2P (DSP Rev2 Present) bit indicates the presence of the MIPS DSP Module Revision 2 or higher. Because the
DSP Module is always supplied with the M6200 processor core and is configurable, the DSPP and DSP2P are always
preset to 0’s or 1’s.

The MX (DSP Module Enable) read/write bit in the CP0 Status register must be set to enable access to the additional
instructions defined by the DSP Module, as well as to the MTLO/HI, MFLO/HI instructions that access accumulators
ac0, ac1, ac2, and ac3. Executing a DSP Module instruction or the MTLO/HI, MFLO/HI instructions with this bit set
to zero causes a DSP State Disabled Exception (exception code 26 in the CP0 Cause register). This exception can be
used by system software to do lazy context switching.

18 Same instructions as above, when the destination is accumulator (HI-LO pair) two.

19 Same instructions as above, when the destination is accumulator (HI-LO pair) three.

20 Instructions that set this bit on an overflow/underflow: ABSQ_S, ADDQ, ADDQ_S, ADDU,
ADDU_S, ADDWC, SUBQ, SUBQ_S, SUBU and SUBU_S.

21 Instructions that set this bit on an overflow/underflow: MUL, MUL_S, MULEQ_S, MULEU_S,
MULQ_RS, and MULQ_S.

22 Instructions that set this bit on an overflow/underflow: PRECRQ_RS, SHLL, SHLL_S, SHLLV,
and SHLLV_S.

23 Instructions that set this bit on an overflow/underflow: EXTR, EXTR_S, EXTR_RS, EXTRV,
and EXTRV_RS.

Table 2.2 DSPControl (Continued) ouflag Bits

Bit Number Description

Chapter 3

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 37

Memory Management of the M6200 Core

The M6200 processor core includes a Memory Management Unit (MMU) that interfaces between the execution unit
and the SRAM controller. The core implements a simple Fixed Mapping Translation (FMT) style MMU.

3.1 Introduction

The MMU in a M6200 processor core translates a virtual address to a physical address before the request is sent to the
SRAM interface for an external memory reference.

In the M6200 processor core, the MMU is based on a simple algorithm to translate virtual addresses to physical
addresses via a Fixed Mapping Translation (FMT) mechanism. These translations are different for various regions of
the virtual address space (useg/kuseg, kseg0, kseg1, kseg2/3).

3.1.1 Memory Management Unit (MMU)

The M6200 core contains a simple Fixed Mapping Translation (FMT) MMU that interfaces between the execution
unit and the SRAM controller.

3.1.1.1 Fixed Mapping Translation (FMT)

An FMT is smaller and simpler than the full Translation Lookaside Buffer (TLB) style MMU found in other MIPS
cores. Like a TLB, the FMT performs virtual-to-physical address translation and provides attributes for the different
segments. Those segments that are unmapped in a TLB implementation (kseg0 and kseg1) are translated identically
by the FMT.

Figure 3.1 shows how the memory management unit interacts with the SRAM access in the M6200 core.

3.2 Modes of Operation

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 39

Figure 3.2 M6200 processor core Virtual Memory Map

Each of the segments shown in Figure 3.2 are either mapped or unmapped. The following two sub-sections explain
the distinction. Then sections 3.2.2 “User Mode”, 3.2.3 “Kernel Mode” and 3.2.4 “Debug Mode” specify which
segments are actually mapped and unmapped.

3.2.1.1 Unmapped Segments

An unmapped segment does not use the FMT to translate from virtual-to-physical addresses.

Unmapped segments have a fixed simple translation from virtual to physical address. This is much like the transla-
tions the FMT provides for the M6200 core, but we will still make the distinction.

All segments are treated as uncached within the M6200 core. Cache coherency attributes of cached or uncached can
be specified and this information will be sent with the request to allow the system to make a distinction between the
two.

useg kuseg kuseg

kseg0

kseg1

kseg2

kseg3

kseg2

kseg1

kseg0

kseg3

kseg3

dseg

User Mode Kernel Mode Debug ModeVirtual Address

0x7FFF_FFFF

0x8000_0000

0x9FFF_FFFF

0xBFFF_FFFF

0xDFFF_FFFF

0xFF1F_FFFF

0xFF3F_FFFF

0xFFFF_FFFF

0xA000_0000

0xC000_0000

0xE000_0000

0xFF20_0000

0xFF40_0000

0x0000_0000

3.2 Modes of Operation

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 41

All valid user mode virtual addresses have their most significant bit cleared to 0, indicating that user mode can only
access the lower half of the virtual memory map. Any attempt to reference an address with the most significant bit set
while in user mode causes an address error exception.

The system maps all references to useg through the FMT.

3.2.3 Kernel Mode

The processor operates in Kernel mode when the DM bit in the Debug register is 0 and the Status register contains one
or more of the following values:

• UM = 0

• ERL = 1

• EXL = 1

When a non-debug exception is detected, EXL or ERL will be set and the processor will enter Kernel mode. At the end
of the exception handler routine, an Exception Return (ERET) instruction is generally executed. The ERET instruc-
tion jumps to the Exception PC, clears ERL, and clears EXL if ERL=0. This may return the processor to User mode.

Kernel mode virtual address space is divided into regions differentiated by the high-order bits of the virtual address,
as shown in Figure 3.4. Also, Table 3.2 lists the characteristics of the Kernel mode segments.

 Memory Management of the M6200 Core

42 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

Figure 3.4 Kernel Mode Virtual Address Space

Table 3.2 Kernel Mode Segments

Address Bit
Values

Status Register Is One
of These Values

Segment
Name Address Range

Segment
SizeUM EXL ERL

A(31) = 0 (UM = 0
or

EXL = 1
or

ERL = 1)
and

DM = 0

kuseg 0x0000_0000
through

0x7FFF_FFFF

2 GBytes (231
bytes)

A(31:29) = 1002 kseg0 0x8000_0000
through

0x9FFF_FFFF

512 MBytes
(229 bytes)

A(31:29) = 1012 kseg1 0xA000_0000
through

0xBFFF_FFFF

512 MBytes
(229 bytes)

A(31:29) = 1102 kseg2 0xC000_0000
through

0xDFFF_FFFF

512 MBytes
(229 bytes)

A(31:29) = 1112 kseg3 0xE000_0000
through

0xFFFF_FFFF

512 MBytes
(229 bytes)

Kernel virtual address space
Unmapped, 512MB

kuseg

kseg0

kseg1

kseg2

kseg3

Fixed Mapped, 2048MB

Kernel virtual address space
Unmapped, Uncached, 512MB

Kernel virtual address space
Fix Mapped, 512MB

Kernel virtual address space
Fix Mapped, 512MB

0x0000_0000

0x8000_0000

0xA000_0000

0xC000_0000

0xE000_0000

0x7FFF_FFFF

0x9FFF_FFFF

0xBFFF_FFFF

0xDFFF_FFFF

0xFFFF_FFFF

3.2 Modes of Operation

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 43

3.2.3.1 Kernel Mode, User Space (kuseg)

In Kernel mode, when the most-significant bit of the virtual address (A31) is cleared, the 32-bit kuseg virtual address
space is selected and covers the full 231 bytes (2 GBytes) of the current user address space mapped to addresses
0x0000_0000 - 0x7FFF_FFFF.

When the Status register’s ERL = 1, the user address region becomes a 229-byte unmapped and uncached address
space. While in this setting, the kuseg virtual address maps directly to the same physical address.

3.2.3.2 Kernel Mode, Kernel Space 0 (kseg0)

In Kernel mode, when the most-significant three bits of the virtual address are 1002, 32-bit kseg0 virtual address

space is selected; it is the 229-byte (512-MByte) kernel virtual space located at addresses 0x8000_0000 -
0x9FFF_FFFF. References to kseg0 are unmapped; the physical address selected is defined by subtracting
0x8000_0000 from the virtual address. The K0 field of the Config register controls cacheability.

3.2.3.3 Kernel Mode, Kernel Space 1 (kseg1)

In Kernel mode, when the most-significant three bits of the 32-bit virtual address are 1012, 32-bit kseg1 virtual

address space is selected. kseg1 is the 229-byte (512-MByte) kernel virtual space located at addresses 0xA000_0000 -
0xBFFF_FFFF. References to kseg1 are unmapped; the physical address selected is defined by subtracting
0xA000_0000 from the virtual address.

3.2.3.4 Kernel Mode, Kernel Space 2 (kseg2)

In Kernel mode, when UM = 0, ERL = 1, or EXL = 1 in the Status register, and DM = 0 in the Debug register, and the
most-significant three bits of the 32-bit virtual address are 1102, 32-bit kseg2 virtual address space is selected. In the

M6200 core, this 229-byte (512-MByte) kernel virtual space is located at physical addresses 0xC000_0000 -
0xDFFF_FFFF.

3.2.3.5 Kernel Mode, Kernel Space 3 (kseg3)

In Kernel mode, when the most-significant three bits of the 32-bit virtual address are 1112 , the kseg3 virtual address

space is selected. In the M6200 core, this 229-byte (512-MByte) kernel virtual space is located at physical addresses
0xE000_0000 - 0xFFFF_FFFF.

3.2.4 Debug Mode

Debug mode address space is identical to Kernel mode address space with respect to mapped and unmapped areas,
except for kseg3. In kseg3, a debug segment dseg co-exists in the virtual address range 0xFF20_0000 to
0xFF3F_FFFF. The layout is shown in Figure 3.5.

3.3 Fixed Mapping MMU

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 45

unpredictable, and writes are ignored to any unimplemented register in the drseg. Refer to Chapter 8, “Debug Support
in the M6200 Core” on page 152 for more information on the DCR.

The allowed access size is limited for the drseg. Only word size transactions are allowed. Operation of the processor
is undefined for other transaction sizes.

3.2.4.2 Conditions and Behavior for Access to dmseg, Debug Memory

The behavior of CPU access to the dmseg address range at 0xFF20_0000 to 0xFF2F_FFFF is determined by the table
shown in Table 3.5.

The case with access to the dmseg when the ProbEn bit in the DCR register is 0 is not expected to happen. Debug
software is expected to check the state of the ProbEn bit in DCR register before attempting to reference dmseg. If
such a reference does happen, the reference hangs until it is satisfied by the probe. The probe can not assume that
there will never be a reference to dmseg if the ProbEn bit in the DCR register is 0 because there is an inherent race
between the debug software sampling the ProbEn bit as 1 and the probe clearing it to 0.

3.3 Fixed Mapping MMU

The M6200 core implements a simple Fixed Mapping (FM) memory management unit that is smaller than the a full
translation lookaside buffer (TLB) and more easily synthesized. Like a TLB, the FMT performs virtual-to-physical
address translation and provides attributes for the different memory segments. Those memory segments which are
unmapped in a TLB implementation (kseg0 and kseg1) are translated identically by the FMT MMU.

The FMT also determines the cacheability of each segment. These attributes are controlled via bits in the Config reg-
ister. Table 3.6 shows the encoding for the K23 (bits 30:28), KU (bits 27:25) and K0 (bits 2:0) of the Config register.

The M6200 core does not contain caches and will treat all references as uncached, but these Config fields will be sent
out to the system with the request and it can choose to use them to control any external caching that may be present.

Table 3.5 CPU Access to dmseg Address Range

Transaction
ProbEn bit in
DCR register

LSNM bit in
Debug register Access

Load / Store Don’t care 1 Kernel mode address space (kseg3)

Fetch 1 Don’t care dmseg

Load / Store 1 0

Fetch 0 Don’t care See comments below

Load / Store 0 0

Table 3.6 Cacheability of Segments with Block Address Translation

Segment
Virtual Address

Range Cacheability

useg/kuseg 0x0000_0000-
0x7FFF_FFFF

Controlled by the KU field (bits 27:25) of the Config register.

kseg0 0x8000_0000-
0x9FFF_FFFF

Controlled by the K0 field (bits 2:0) of the Config register.

 Memory Management of the M6200 Core

46 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

The FMT performs a simple translation to map from virtual addresses to physical addresses. This mapping is shown
in Figure 3.6. When ERL=1, useg and kuseg become unmapped and uncached. The ERL behavior is the same as if
there was a TLB. The ERL mapping is shown in Figure 3.7.

The ERL bit is usually never asserted by software. It is asserted by hardware after a Reset, SoftReset or NMI. See
Chapter 4, “Exceptions and Interrupts in the M6200 Core” on page 49 for further information on exceptions.

kseg1 0xA000_0000-
0xBFFF_FFFF

Always uncacheable.

kseg2 0xC000_0000-
0xDFFF_FFFF

Controlled by the K23 field (bits 30:28) of the Config register.

kseg3 0xE000_0000-
0xFFFF_FFFF

Controlled by K23 field (bits 30:28) of the Config register.

Table 3.6 Cacheability of Segments with Block Address Translation (Continued)

Segment
Virtual Address

Range Cacheability

Chapter 4

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 49

Exceptions and Interrupts in the M6200 Core

The M6200 processor core receives exceptions from a number of sources, including arithmetic overflows, I/O inter-
rupts, and system calls. When the CPU detects one of these exceptions, the normal sequence of instruction execution
is suspended and the processor enters kernel mode. In kernel mode, the core disables interrupts and forces execution
of a software exception processor (called a handler) located at a specific address. The handler saves the context of the
processor, including the contents of the program counter, the current operating mode, and the status of the interrupts
(enabled or disabled). This context is saved so it can be restored when the exception has been serviced.

When an exception occurs, the core loads the Exception Program Counter (EPC) register with a location where exe-
cution can restart after the exception has been serviced. Most exceptions are precise, which mean that EPC can be
used to identify the instruction that caused the exception. For precise exceptions, the restart location in the EPC regis-
ter is the address of the instruction that caused the exception or, if the instruction was executing in a branch delay slot
or forbidden slot, the address of the branch instruction immediately preceding the delay slot. To distinguish between
the two, software must read the BD bit in the CP0 Cause register. For imprecise exceptions, the instruction that
caused the exception cannot be identified. Bus error exceptions, CP2 exceptions, debug breakpoint exceptions, and
SRAM Interface Parity or ECC errors may be imprecise. For more information on the behavior of the core in
response to imprecise exceptions, refer to the descriptions of the individual exceptions in subsequent sections of this
chapter.

4.1 Exception Conditions

When an exception condition occurs, the instruction causing the exception and all those that follow it in the pipeline
are cancelled (“flushed”). Accordingly, any stall conditions and any later exception conditions that might have refer-
enced this instruction are inhibited—obviously there is no benefit in servicing stalls for a cancelled instruction.

When an exception condition is detected on an instruction fetch, the core aborts that instruction and all instructions
that follow. When this instruction reaches the W stage, various CP0 registers are written with the exception state,
change the current program counter (PC) to the appropriate exception vector address, and clearing the exception bits
of earlier pipeline stages.

This implementation allows all preceding instructions to complete execution and prevents all subsequent instructions
from completing. Thus, the value in the EPC (ErrorEPC for errors, or DEPC for debug exceptions) is sufficient to
restart execution. It also ensures that exceptions are taken in the order of execution; an instruction taking an exception
may itself be killed by an instruction further down the pipeline that takes an exception in a later cycle.

 Exceptions and Interrupts in the M6200 Core

50 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

4.2 Exception Priority

Table 4.1 contains a list and a brief description of all exception conditions, The exceptions are listed in the order of
their relative priority, from highest priority (Reset) to lowest priority. When several exceptions occur simultaneously,
the exception with the highest priority is taken.

Table 4.1 Priority of Exceptions

Exception Description

Reset Assertion of SI_ColdResetN signal.

Soft Reset Assertion of SI_WarmResetN signal.

DSS Debug Single Step.

DINT Debug Interrupt. Caused by the assertion of the external EJ_DINT input, or by
setting the DbgBrk bit in the OCR register.

NMI Asserting edge of SI_NMI signal.

Interrupt Assertion of unmasked hardware or software interrupt signal.

Protection - Instruction fetch Instruction fetch access to a protected memory region was attempted.

DIB Debug hardware instruction break matched.

AdEL (Instruction) Fetch address alignment error.
User-mode fetch reference to kernel address.

ISRAM Parity Error Parity error on ISRAM transmission.

ISRAM ECC Error ECC error on ISRAM access.

IBE Instruction fetch bus error.

Execution Exceptions An instruction could not be completed because it was not allowed access to the
required resources (Coprocessor Unusable) or was illegal (Reserved Instruc-
tion). If both exceptions occur on the same instruction, the Coprocessor Unus-
able Exception may take priority over the Reserved Instruction Exception. (See
the description of the RI exceptions for more details.) In the M6200 and M6250
family cores, a DSP-disabled (MDMX) exception is treated as the same class
and priority as the Coprocessor Unusable Exception.

Protection - Instr Execution Occurs when an attempt to write EBase is not allowed by MPU.

Protection - Data access Data access to a protected memory region was attempted.

DDBL / DDBS Debug Data Address Break (address only) or Debug Data Value Break on Store
(address and value).

AdEL (Data) Load address alignment error.
User mode load reference to kernel address.

AdES (Data) Store address alignment error.
User mode store to kernel address.

DSRAM Parity Error Parity error on DSRAM transmission.

DSRAM ECC Error ECC error on DSRAM access.

DBE Load or store bus error.

DDBL Debug data hardware breakpoint matched in load data compare.

CBrk Debug complex breakpoint.

4.3 Interrupts

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 51

4.3 Interrupts

In the MIPS32® Release 1 architecture, support for exceptions included two software interrupts, six hardware inter-
rupts, and a special-purpose timer interrupt. The timer interrupt was provided external to the core and was typically
combined with hardware interrupt 5 in a system-dependent manner. Interrupts were handled either through the gen-
eral exception vector (offset 0x180) or the special interrupt vector (0x200), based on the value of CauseIV. Software
was required to prioritize interrupts as a function of the CauseIV bits in the interrupt handler prologue.

Release 2 of the Architecture, implemented by the M6200 core, adds a number of upward-compatible extensions to
the Release 1 interrupt architecture, including support for vectored interrupts and the implementation of a new inter-
rupt mode that permits the use of an external interrupt controller.

The M6200 core also includes the Microcontroller Application-Specific Extension (MCU ASE) that provides
enhanced interrupt delivery and reduction of interrupt latency.

4.3.1 Interrupt Modes

The M6200 core includes support for three interrupt modes, as defined by Release 2 of the Architecture:

• Interrupt Compatibility mode, in which the behavior of the M6200 is identical to the behavior of a Release 1
implementations.

• Vectored Interrupt (VI) mode, which adds the ability to prioritize and vector interrupts to a handler dedicated to
that interrupt, and to assign a GPR shadow set for use during interrupt processing. The presence of this mode is
denoted by the VInt bit in the Config3 register. Although this mode is architecturally optional, it is always present
on the M6200 processor, so the VInt bit will always read as a 1.

• External Interrupt Controller (EIC) mode, which redefines the way interrupts are handled to provide full support
for an external interrupt controller that handles prioritization and vectoring of interrupts. As with VI mode, this
mode is architecturally optional. The presence of this mode is denoted by the VEIC bit in the Config3 register. On
the M6200 core, the VEIC bit is set externally by the static input, SI_EICPresent, to allow system logic to indi-
cate the presence of an external interrupt controller.

Following reset, the M6200 processor defaults to Compatibility mode, which is fully compatible with all implemen-
tations of Release 1 of the Architecture.

Table 4.2 shows the current interrupt mode of the processor as a function of the Coprocessor 0 register fields that can
affect the mode.

Table 4.2 Interrupt Modes

S
ta

tu
s

B
E

V

C
au

se
IV

In
tC

tl
V

S

C
o

n
fi

g
3 V

IN
T

C
o

n
fi

g
3 V

E
IC

Interrupt Mode

1 x x x x Compatibly

x 0 x x x Compatibility

x x 0 x x Compatibility

0 1 0 1 0 Vectored Interrupt

0 1 0 x 1 External Interrupt Controller

 Exceptions and Interrupts in the M6200 Core

52 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

4.3.1.1 Interrupt Compatibility Mode

This is the default interrupt mode for the processor and is entered when a Reset exception occurs. In this mode, inter-
rupts are non-vectored and dispatched though exception vector offset 0x180 (if CauseIV = 0) or vector offset 0x200
(if CauseIV = 1). This mode is in effect if any of the following conditions are true:

• CauseIV = 0

• StatusBEV = 1

• IntCtlVS = 0, which would be the case if vectored interrupts are not implemented, or have been disabled.

Here is a typical software handler for interrupt compatibility mode:

/*
 * Assumptions:
 * - CauseIV = 1 (if it were zero, the interrupt exception would have to
 * be isolated from the general exception vector before getting
 * here)
 * - GPRs k0 and k1 are available (no shadow register switches invoked in
 * compatibility mode)
 * - The software priority is IP9..IP0 (HW7..HW0, SW1..SW0)
 *
 * Location: Offset 0x200 from exception base
 */

IVexception:
mfc0 k0, C0_Cause /* Read Cause register for IP bits */
mfc0 k1, C0_Status /* and Status register for IM bits */
andi k0, k0, M_CauseIM /* Keep only IP bits from Cause */
and k0, k0, k1 /* and mask with IM bits */
beq k0, zero, Dismiss /* no bits set - spurious interrupt */
clz k0, k0 /* Find first bit set, IP9..IP0; k0 = 14..23 */
xori k0, k0, 0x17 /* 14..23 => 9..0 */
sll k0, k0, VS /* Shift to emulate software IntCtlVS */
la k1, VectorBase /* Get base of 10 interrupt vectors */
addu k0, k0, k1 /* Compute target from base and offset */
jr k0 /* Jump to specific exception routine */
nop

/*
 * Each interrupt processing routine processes a specific interrupt, analogous
 * to those reached in VI or EIC interrupt mode. Since each processing routine

0 1 0 0 0 Can’t happen - IntCtlVS can not be non-zero if neither
Vectored Interrupt nor External Interrupt Controller mode
is implemented.

“x” denotes don’t care

Table 4.2 Interrupt Modes (Continued)

S
ta

tu
s

B
E

V

C
au

se
IV

In
tC

tl
V

S

C
o

n
fi

g
3 V

IN
T

C
o

n
fi

g
3 V

E
IC

Interrupt Mode

4.3 Interrupts

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 53

 * is dedicated to a particular interrupt line, it has the context to know
 * which line was asserted. Each processing routine may need to look further
 * to determine the actual source of the interrupt if multiple interrupt requests
 * are ORed together on a single IP line. Once that task is performed, the
 * interrupt may be processed in one of two ways:
 *
 * - Completely at interrupt level (e.g., a simply UART interrupt). The
 * SimpleInterrupt routine below is an example of this type.
 * - By saving sufficient state and re-enabling other interrupts. In this
 * case the software model determines which interrupts are disabled during
 * the processing of this interrupt. Typically, this is either the single
 * StatusIM bit that corresponds to the interrupt being processed, or some
 * collection of other StatusIM bits so that “lower” priority interrupts are
 * also disabled. The NestedInterrupt routine below is an example of this type.
 */

SimpleInterrupt:
/*
 * Process the device interrupt here and clear the interupt request
 * at the device. In order to do this, some registers may need to be
 * saved and restored. The coprocessor 0 state is such that an ERET
 * will simple return to the interrupted code.
 */

eret /* Return to interrupted code */

NestedException:
/*
 * Nested exceptions typically require saving the EPC and Status registers,
 * any GPRs that may be modified by the nested exception routine, disabling
 * the appropriate IM bits in Status to prevent an interrupt loop, putting
 * the processor in kernel mode, and re-enabling interrupts. The sample code
 * below can not cover all nuances of this processing and is intended only
 * to demonstrate the concepts.
 */

/* Save GPRs here, and setup software context */
mfc0 k0, C0_EPC /* Get restart address */
sw k0, EPCSave /* Save in memory */
mfc0 k0, C0_Status /* Get Status value */
sw k0, StatusSave /* Save in memory */
li k1, ~IMbitsToClear /* Get Im bits to clear for this interrupt */

/* this must include at least the IM bit */
/* for the current interrupt, and may include */
/* others */

and k0, k0, k1 /* Clear bits in copy of Status */
ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)

/* Clear KSU, ERL, EXL bits in k0 */
mtc0 k0, C0_Status /* Modify mask, switch to kernel mode, */

/* re-enable interrupts */

/*
 * Process interrupt here, including clearing device interrupt.
 * In some environments this may be done with a thread running in
 * kernel or user mode. Such an environment is well beyond the scope of
 * this example.
 */

/*

 Exceptions and Interrupts in the M6200 Core

54 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

 * To complete interrupt processing, the saved values must be restored
 * and the original interrupted code restarted.
 */

di /* Disable interrupts - may not be required */
lw k0, StatusSave /* Get saved Status (including EXL set) */
lw k1, EPCSave /* and EPC */
mtc0 k0, C0_Status /* Restore the original value */
mtc0 k1, C0_EPC /* and EPC */
/* Restore GPRs and software state */
eret /* Dismiss the interrupt */

4.3.1.2 Vectored Interrupt (VI) Mode

In Vectored Interrupt (VI) mode, a priority encoder prioritizes pending interrupts and generates a vector which can be
used to direct each interrupt to a dedicated handler routine. This mode also allows each interrupt to be mapped to a
GPR shadow register set for use by the interrupt handler. VI mode is in effect when all the following conditions are
true:

• Config3VInt = 1

• Config3VEIC = 0

• IntCtlVS  0

• CauseIV = 1

• StatusBEV = 0

In VI interrupt mode, the eight hardware interrupts are interpreted as individual hardware interrupt requests. The
timer interrupt is combined in a system-dependent way (external to the core) with the hardware interrupts (the inter-
rupt with which they are combined is indicated by the PTI field in IntCtlI) to provide the appropriate relative priority
of the timer interrupt with that of the hardware interrupts. The processor interrupt logic ANDs each of the CauseIP
bits with the corresponding StatusIM bits. If any of these values is 1, and if interrupts are enabled (StatusIE = 1,
StatusEXL = 0, and StatusERL = 0), an interrupt is signaled and a priority encoder scans the values in the order shown
in Table 4.3.

Table 4.3 Relative Interrupt Priority for Vectored Interrupt Mode

Relative
Priority

Interrupt
Type

Interrupt
Source

Interrupt
Request

Calculated From

Vector Number
Generated by

Priority Encoder

Highest Priority Hardware HW7 IP9 and IM9 9

HW6 IP8 and IM8 8

HW5 IP7 and IM7 7

HW4 IP6 and IM6 6

HW3 IP5 and IM5 5

HW2 IP4 and IM4 4

HW1 IP3 and IM3 3

HW0 IP2 and IM2 2

 Exceptions and Interrupts in the M6200 Core

56 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

A nested interrupt is similar to that shown for compatibility mode, but may also take advantage of running the nested
exception routine in the GPR shadow set dedicated to the interrupt or in another shadow set. Such a routine might
look as follows:

NestedException:
/*
 * Nested exceptions typically require saving the EPC, Status and SRSCtl registers,
 * setting up the appropriate GPR shadow set for the routine, disabling
 * the appropriate IM bits in Status to prevent an interrupt loop, putting
 * the processor in kernel mode, and re-enabling interrupts. The sample code
 * below can not cover all nuances of this processing and is intended only
 * to demonstrate the concepts.
 */

/* Use the current GPR shadow set, and setup software context */
mfc0 k0, C0_EPC /* Get restart address */
sw k0, EPCSave /* Save in memory */
mfc0 k0, C0_Status /* Get Status value */
sw k0, StatusSave /* Save in memory */
mfc0 k0, C0_SRSCtl /* Save SRSCtl if changing shadow sets */
sw k0, SRSCtlSave
li k1, ~IMbitsToClear /* Get Im bits to clear for this interrupt */

/* this must include at least the IM bit */
/* for the current interrupt, and may include */
/* others */

and k0, k0, k1 /* Clear bits in copy of Status */
/* If switching shadow sets, write new value to SRSCtlPSS here */
ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)

/* Clear KSU, ERL, EXL bits in k0 */
mtc0 k0, C0_Status /* Modify mask, switch to kernel mode, */

/* re-enable interrupts */
/*
 * If switching shadow sets, clear only KSU above, write target
 * address to EPC, and do execute an eret to clear EXL, switch
 * shadow sets, and jump to routine
 */

/* Process interrupt here, including clearing device interrupt */

/*
 * To complete interrupt processing, the saved values must be restored
 * and the original interrupted code restarted.
 */

di /* Disable interrupts - may not be required */
lw k0, StatusSave /* Get saved Status (including EXL set) */
lw k1, EPCSave /* and EPC */
mtc0 k0, C0_Status /* Restore the original value */
lw k0, SRSCtlSave /* Get saved SRSCtl */
mtc0 k1, C0_EPC /* and EPC */
mtc0 k0, C0_SRSCtl /* Restore shadow sets */
ehb /* Clear hazard */
eret /* Dismiss the interrupt */

4.3 Interrupts

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 57

4.3.1.3 External Interrupt Controller Mode

External Internal Interrupt Controller Mode redefines the way that the processor interrupt logic is configured to pro-
vide support for an external interrupt controller. The interrupt controller is responsible for prioritizing all interrupts,
including hardware, software, timer, and performance counter interrupts, and directly supplying to the processor the
priority level and vector number of the highest priority interrupt. EIC interrupt mode is in effect if all of the following
conditions are true:

• Config3VEIC = 1

• IntCtlVS  0

• CauseIV = 1

• StatusBEV = 0

In EIC interrupt mode, the processor sends the state of the software interrupt requests (CauseIP1..IP0), the timer inter-
rupt request (CauseTI), the performance counter interrupt request (CausePCI) and Fast Debug Channel Interrupt
(CauseFDCI) to the external interrupt controller, where it prioritizes these interrupts in a system-dependent way with
other hardware interrupts. The interrupt controller can be a hard-wired logic block, or it can be configurable based on
control and status registers. This allows the interrupt controller to be more specific or more general as a function of
the system environment and needs.

The external interrupt controller prioritizes its interrupt requests and produces the priority level and the vector num-
ber of the highest priority interrupt to be serviced. The priority level, called the Requested Interrupt Priority Level
(RIPL), is an 8-bit encoded value in the range 0..255, inclusive. A value of 0 indicates that no interrupt requests are
pending. The values 1..255 represent the lowest (1) to highest (255) RIPL for the interrupt to be serviced. The inter-
rupt controller passes this value on the 8 hardware interrupt lines, which are treated as an encoded value in EIC inter-
rupt mode. There are two implementation options available for the vector offset:

1. The first option is to send a separate vector number along with the RIPL to the processor.

2. A second option is to send an entire vector offset along with the RIPL to the processor. This option is
enabled through the core’s configuration GUI, and it is not affected by software.

The M6200 core does not support the option to treat the RIPL value as the vector number for the processor.

StatusIPL (which overlays StatusIIM9..IM2) is interpreted as the Interrupt Priority Level (IPL) at which the processor is
currently operating (with a value of zero indicating that no interrupt is currently being serviced). When the interrupt
controller requests service for an interrupt, the processor compares RIPL with StatusIPL to determine if the requested
interrupt has higher priority than the current IPL. If RIPL is strictly greater than StatusIPL, and interrupts are enabled
(StatusIE = 1, StatusEXL = 0, and StatusERL = 0) an interrupt request is signaled to the pipeline. When the processor
starts the interrupt exception, it loads RIPL into CauseRIPL (which overlays CauseIP9..IP2) and signals the external
interrupt controller to notify it that the request is being serviced. Because CauseRIPL is only loaded by the processor
when an interrupt exception is signaled, it is available to software during interrupt processing. The vector number that
the EIC passes to the core is combined with the IntCtlVS to determine where the interrupt service routine is located.
The vector number is not stored in any software-visible registers.

In EIC interrupt mode, the external interrupt controller is also responsible for supplying the GPR shadow set number
to use when servicing the interrupt. As such, the SRSMap register is not used in this mode, and the mapping of the
vectored interrupt to a GPR shadow set is done by programming (or designing) the interrupt controller to provide the

4.3 Interrupts

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 59

/* Use the current GPR shadow set, and setup software context */
mfc0 k1, C0_Cause /* Read Cause to get RIPL value */
mfc0 k0, C0_EPC /* Get restart address */
srl k1, k1, S_CauseRIPL /* Right justify RIPL field */
sw k0, EPCSave /* Save in memory */
mfc0 k0, C0_Status /* Get Status value */
sw k0, StatusSave /* Save in memory */
ins k0, k1, S_StatusIPL, 6 /* Set IPL to RIPL in copy of Status */
mfc0 k1, C0_SRSCtl /* Save SRSCtl if changing shadow sets */
sw k1, SRSCtlSave
/* If switching shadow sets, write new value to SRSCtlPSS here */
ins k0, zero, S_StatusEXL, (W_StatusKSU+W_StatusERL+W_StatusEXL)

/* Clear KSU, ERL, EXL bits in k0 */
mtc0 k0, C0_Status /* Modify IPL, switch to kernel mode, */

/* re-enable interrupts */
/*
 * If switching shadow sets, clear only KSU above, write target
 * address to EPC, and do execute an eret to clear EXL, switch
 * shadow sets, and jump to routine
 */

/* Process interrupt here, including clearing device interrupt */

/*
 * The interrupt completion code is identical to that shown for VI mode above.
 */

4.3.2 Generation of Exception Vector Offsets for Vectored Interrupts

For vectored interrupts (in either VI or EIC interrupt mode), a vector number is produced by the interrupt control
logic. This number is combined with IntCtlVS to create the interrupt offset, which is added to 0x200 to create the
exception vector offset. For VI interrupt mode, the vector number is in the range 0..9, inclusive. For EIC interrupt
mode, the vector number is in the range 0..63, inclusive. The IntCtlVS field specifies the spacing between vector loca-
tions. If this value is zero (the default reset state), the vector spacing is zero and the processor reverts to Interrupt
Compatibility Mode. A non-zero value enables vectored interrupts, and Table 4.4 shows the exception vector offset
for a representative subset of the vector numbers and values of the IntCtlVS field.

Table 4.4 Exception Vector Offsets for Vectored Interrupts

Vector Number

Value of IntCtlVS Field

2#00001 2#00010 2#00100 2#01000 2#10000

0 16#0200 16#0200 16#0200 16#0200 16#0200

1 16#0220 16#0240 16#0280 16#0300 16#0400

2 16#0240 16#0280 16#0300 16#0400 16#0600

3 16#0260 16#02C0 16#0380 16#0500 16#0800

4 16#0280 16#0300 16#0400 16#0600 16#0A00

5 16#02A0 16#0340 16#0480 16#0700 16#0C00

6 16#02C0 16#0380 16#0500 16#0800 16#0E00

7 16#02E0 16#03C0 16#0580 16#0900 16#1000

 Exceptions and Interrupts in the M6200 Core

60 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

The general equation for the exception vector offset for a vectored interrupt is:

vectorOffset  16#200 + (vectorNumber  (IntCtlVS  2#00000))

When using large vector spacing and EIC mode, the offset value can overlap with bits that are specified in the EBase
register. Software must ensure that any overlapping bits are specified as 0 in EBase. This implementation ORs
together the offset and base registers, but it is architecturally undefined and software should not rely on this behavior.

Although there are 255 EIC priority interrupts, only 64 vectors are provided. There is no one-to-one mapping for each
EIC interrupt to its interrupt vector. The 255 priority interrupts will share the 64 interrupt vectors as specified by the
SI_EICVector[5:0] input pins. However, as mentioned in option 2 of Section 4.3.1.3 “External Interrupt Controller
Mode”, the SI_Offset[17:1] input pins can be used to provide each EIC interrupt with a unique interrupt handler loca-
tion.

4.3.3 MCU ASE Enhancement for Interrupt Handling

The MCU ASE extends the MIPS/microMIPS32 Architecture with a set of new features designed for the microcon-
troller market. The MCU ASE contains enhancements in two key areas: interrupt delivery and interrupt latency. For
more details, refer to the The MCU Privileged Resource Architecture chapter of the MIPS® Architecture for Pro-
grammers Volume IV-h: The MCU Application-Specific Extension to the MIPS32 Architecture [13] or MIPS® Archi-
tecture for Programmers Volume IV-h: The MCU Application-Specific Extension to the microMIPS32™ Architecture
[14].

4.3.3.1 Interrupt Delivery

The MCU ASE extends the number of hardware interrupt sources from 6 to 8. For legacy and vectored-interrupt
mode, this represents 8 external interrupt sources. For EIC mode, the widened IPL and RIPL fields can now represent
256 external interrupt sources.

4.3.3.2 Interrupt Latency Reduction

The MCU ASE includes a package of extensions to MIPS32/microMIPS32 that decrease the latency of the proces-
sor’s response to a signalled interrupt.

4.3.3.2.1 Interrupt Vector Prefetching

Normally on MIPS architecture processors, when an interrupt or exception is signalled, execution pipelines must be
flushed before the interrupt/exception handler is fetched. This is necessary to avoid mixing the contexts of the inter-
rupted/faulting program and the exception handler. The MCU ASE introduces a hardware mechanism in which the
interrupt exception vector is prefetched whenever the interrupt input signals change. The prefetch memory transac-





61 16#09A0 16#1140 16#2080 16#3F00 16#7C00

62 16#09C0 16#1180 16#2100 16#4000 16#7E00

63 16#09E0 16#11C0 16#2180 16#4100 16#8000

Table 4.4 Exception Vector Offsets for Vectored Interrupts

Vector Number

Value of IntCtlVS Field

2#00001 2#00010 2#00100 2#01000 2#10000

4.4 GPR Shadow Registers

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 61

tion occurs in parallel with the pipeline flush and exception prioritization. This decreases the overall latency of the
execution of the interrupt handler’s first instruction.

4.3.3.2.2 Automated Interrupt Prologue

The use of Shadow Register Sets avoids the software steps of having to save general-purpose registers before han-
dling an interrupt.

The MCU ASE adds additional hardware logic that automatically saves some of the CP0 state in the stack and auto-
matically updates some of the CP0 registers in preparation for interrupt handling.

4.3.3.2.3 Automated Interrupt Epilogue

A mirror to the Automated Prologue, this features automates the restoration of some of the CP0 registers from the
stack and the preparation of some of the CP0 registers for returning to non-exception mode. This feature is imple-
mented by the IRET instruction, which is introduced in this ASE.

4.3.3.2.4 Interrupt Chaining

An optional feature of the Automated Interrupt Epilogue, this feature allows handling a second interrupt after a pri-
mary interrupt is handled, without returning to non-exception mode (and the related pipeline flushes that would nor-
mally be necessary).

4.4 GPR Shadow Registers

Release 2 of the Architecture optionally removes the need to save and restore GPRs on entry to high priority inter-
rupts or exceptions, and to provide specified processor modes with the same capability. This is done by introducing
multiple copies of the GPRs, called shadow sets, and allowing privileged software to associate a shadow set with
entry to kernel mode via an interrupt vector or exception. The normal GPRs are logically considered shadow set zero.

The number of GPR shadow sets is a build-time option on the M6200 core. The core allows one (the normal GPRs),
two, four, eight or sixteen shadow sets. The highest number actually implemented is indicated by the SRSCtlHSS
field. If this field is zero, only the normal GPRs are implemented.

Shadow sets are new copies of the GPRs that can be substituted for the normal GPRs on entry to kernel mode via an
interrupt or exception. When a shadow set is bound to a kernel mode entry condition, reference to GPRs work exactly
as one would expect, but they are redirected to registers that are dedicated to that condition. Privileged software may
need to reference all GPRs in the register file, even specific shadow registers that are not visible in the current mode.
The RDPGPR and WRPGPR instructions are used for this purpose. The CSS field of the SRSCtl register provides the
number of the current shadow register set, and the PSS field of the SRSCtl register provides the number of the previ-
ous shadow register set (that which was current before the last exception or interrupt occurred).

If the processor is operating in VI interrupt mode, binding of a vectored interrupt to a shadow set is done by writing to
the SRSMap register. If the processor is operating in EIC interrupt mode, the binding of the interrupt to a specific
shadow set is provided by the external interrupt controller, and is configured in an implementation-dependent way.
Binding of an exception or non-vectored interrupt to a shadow set is done by writing to the ESS field of the SRSCtl
register. When an exception or interrupt occurs, the value of SRSCtlCSS is copied to SRSCtlPSS, and SRSCtlCSS is set
to the value taken from the appropriate source. On an ERET, the value of SRSCtlPSS is copied back into SRSCtlCSS to
restore the shadow set of the mode to which control returns. More precisely, the rules for updating the fields in the
SRSCtl register on an interrupt or exception are as follows:

 Exceptions and Interrupts in the M6200 Core

62 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

1. No field in the SRSCtl register is updated if any of the following conditions is true. In this case, steps 2 and 3 are
skipped.

• The exception is one that sets StatusERL: Reset, Soft Reset, or NMI.

• The exception causes entry into Debug Mode.

• StatusBEV = 1

• StatusEXL = 1

2. SRSCtlCSS is copied to SRSCtlPSS.

3. SRSCtlCSS is updated from one of the following sources:

• The appropriate field of the SRSMap register, based on IPL, if the exception is an interrupt, CauseIV = 1,
Config3VEIC = 0, and Config3VInt = 1. These are the conditions for a vectored interrupt.

• The EICSS field of the SRSCtl register if the exception is an interrupt, CauseIV = 1, and Config3VEIC = 1.
These are the conditions for a vectored EIC interrupt.

• The ESS field of the SRSCtl register in any other case. This is the condition for a non-interrupt exception, or
a non-vectored interrupt.

Similarly, the rules for updating the fields in the SRSCtl register at the end of an exception or interrupt are as follows:

1. No field in the SRSCtl register is updated if any of the following conditions is true. In this case, step 2 is skipped.

• A DERET is executed.

• An ERET is executed with StatusERL = 1.

2. SRSCtlPSS is copied to SRSCtlCSS.

These rules have the effect of preserving the SRSCtl register in any case of a nested exception or one which occurs
before the processor has been fully initialize (StatusBEV = 1).

Privileged software may switch the current shadow set by writing a new value into SRSCtlPSS, loading EPC with a
target address, and doing an ERET.

4.5 Exception Vector Locations

The Reset, Soft Reset, NMI and Debug exceptions are vectored to a specific location as shown in Table 4.5 and Table
4.6. Addresses for all other exceptions are a combination of a vector offset and a vector base address. In Release 1 of
the architecture, the vector base address was fixed. In Release 2 of the architecture, software is allowed to specify the
vector base address via the EBase register for exceptions that occur when StatusBEV equals 0. Another degree of
flexibility in the selection of the vector base address, for use when StatusBEV equals 1, is provided via a set of input
pins, SI_UseExceptionBase and SI_ExceptionBase[29:12]. Table 4.5 gives the vector base address when
SI_UseExceptionBase equals 0, as a function of the exception and whether the BEV bit is set in the Status register.
Table 4.6 gives the vector base addresses when SI_UseExceptionBase equals 1. As can be seen in Table 4.6, when
SI_UseExceptionBase equals 1, the exception vectors for cases where StatusBEV equals 0 are not affected.

4.5 Exception Vector Locations

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 63

Table 4.7 gives the offsets from the vector base address as a function of the exception. Note that the IV bit in the
Cause register causes Interrupts to use a dedicated exception vector offset, rather than the general exception vector.
Table 4.4 gives the offset from the base address in the case where StatusBEV = 0 and CauseIV = 1. Table 4.8 com-
bines these two tables into one that contains all possible vector addresses as a function of the state that can affect the
vector selection. To avoid complexity in the table, it is assumed that IntCtlVS is 0.

.

Table 4.5 Exception Vector Base Addresses when SI_UseExceptionBase = 0

Exception

StatusBEV

0 1

Reset, Soft Reset, NMI 16#BFC0.0000

Debug (with ProbEn = 0 in the OCI
CONTROL Register)

16#BFC0.0480

Debug (with ProbEn = 1 in the OCI
CONTROL Register)

16#FF20.0200

SRAM Interface Parity Error EBase31 30  1  EBase28 12  16#000
Note that EBase31 30 have the fixed
value 2#10

16#BFC0.0300

SRAM ECC Error EBase31 30  1 
EBase28 12  16#000

Note that EBase31 30 have the fixed
value 2#10

16#BFC0.0300

Other EBase31 12  16#000
Note that EBase31 30 have the fixed
value 2#10

16#BFC0.0200

Table 4.6 Exception Vector Base Addresses when SI_UseExceptionBase = 1

Exception

StatusBEV

0 1

Reset, Soft Reset, NMI 2#10 || SI_ExceptionBase[29:12] || 16#000

Debug with
OCRProbEn = 1

16#FF20.0200

Debug with
OCRProbEn = 0 and
DCRRdVec=1

 DebugVectorAddr[31:0]
Note that DebugVectorAddr[31:30] have the fixed value

2#10

Debug with
OCRProbEn = 0 and
DCRRdVec = 0

2#10 ||SI_ExceptionBase[29:12] || 16#480

 Exceptions and Interrupts in the M6200 Core

64 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

SRAM Interface Parity Error EBase31 30  1  EBase28 12  16#000
Note that EBase31 30 have the fixed
value 2#10

16#BFC0.0300

SRAM ECC Error EBase31 30  1 
EBase28 12  16#000

Note that EBase31 30 have the fixed
value 2#10

16#BFC0.0300

Other EBase31 12  16#000
Note that EBase31 30 have the fixed
value 2#10

16#BFC0.0200

Table 4.7 Exception Vector Offsets

Exception Vector Offset

Cache Error 16#100

General Exception 16#180

Interrupt, CauseIV = 1 16#200

Reset, Soft Reset, NMI None (Uses Reset Base Address)

Table 4.8 Exception Vectors

Exception

SI_Use
Exception

Base StatusBEV StatusEXL CauseIV
Debug
ProbEn

DCR
RdVec

Vector

Assumes that EBase retains its
reset state and that IntCtlVS = 0

Reset, Soft
Reset, NMI

0 x x x x x 16#BFC0.0000

Reset, Soft
Reset, NMI

1 x x x x x 2#10 ||
SI_ExceptionBase[29:12] ||

16#000

Debug 0 x x x 0 0 2#10 ||
DebugVectorAddr[29:7] ||

16#00

Debug 1 x x x 1 0 2#10 ||
SI_ExceptionBase[29:12] ||

16#480

Table 4.6 Exception Vector Base Addresses when SI_UseExceptionBase = 1 (Continued)

Exception

StatusBEV

0 1

4.6 General Exception Processing

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 65

4.6 General Exception Processing

With the exception of Reset, Soft Reset, NMI, SRAM ECC error, SRAM Parity error, and Debug exceptions, which
have their own special processing as described below, exceptions have the same basic processing flow:

• If the EXL bit in the Status register is zero, the EPC register is loaded with the PC at which execution will be
restarted and the BD bit is set appropriately in the Cause register (see Table 5.17). The value loaded into the EPC
register is dependent on whether the instruction is in the delay slot of a branch or jump which has delay slots.
Table 4.9 shows the value stored in each of the CP0 PC registers, including EPC. If StatusBEV = 0, the CSS field
in the SRSCtl register is copied to the PSS field, and the CSS value is loaded from the appropriate source.

If the EXL bit in the Status register is set, the EPC register is not loaded and the BD bit is not changed in the
Cause register.

SRAM Inter-
face
Parity Error

x 0 x x x x 16#EBase[31:30] || 2#1 ||
EBase[28:12] || 16#000

SRAM Inter-
face
Parity Error

x 1 x x x x 16#BFC0.0300

SRAM ECC
Error

x 0 x x x x 16#EBase[31:30] || 2#1 ||
EBase[28:12] || 16#000

SRAM ECC
Error

x 1 x x x x 16#BFC0.0300

Interrupt x 0 0 0 x x 16#8000.0180

Interrupt x 0 0 1 x x 16#8000.0200

Interrupt x 1 0 0 x x 16#BFC0.0380

Interrupt x 1 0 1 x x 16#BFC0.0400

All others x 0 x x x x 16#8000.0180

All others 1 x x x x 16#BFC0.0380

‘x’ denotes don’t care

Table 4.9 Value Stored in EPC, ErrorEPC, or DEPC on an Exception

In Branch/Jump
Delay Slot? Value stored in EPC/ErrorEPC/DEPC

No Address of the instruction

Yes Address of the branch or jump instruction (PC-4)

Table 4.8 Exception Vectors (Continued)

Exception

SI_Use
Exception

Base StatusBEV StatusEXL CauseIV
Debug
ProbEn

DCR
RdVec

Vector

Assumes that EBase retains its
reset state and that IntCtlVS = 0

 Exceptions and Interrupts in the M6200 Core

66 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

• The CE and ExcCode fields of the Cause registers are loaded with the values appropriate to the exception. The
CE field is loaded, but not defined, for any exception type other than a coprocessor unusable exception.

• The EXL bit is set in the Status register.

• The processor is started at the exception vector.

The value loaded into EPC represents the restart address for the exception and need not be modified by exception
handler software in the normal case. Software need not look at the BD bit in the Cause register unless it wishes to
identify the address of the instruction that actually caused the exception.

Note that individual exception types may load additional information into other registers. This is noted in the descrip-
tion of each exception type below.

Operation:

/* If StatusEXL is 1, all exceptions go through the general exception vector */
/* and neither EPC nor CauseBD nor SRSCtl are modified */
if StatusEXL = 1 then

vectorOffset  0x180
else
/* For implementations that include the MIPS16e ASE, calculate potential */

/* PC adjustment for exceptions in the delay slot */
if (Config1CA = 0 & Config3ISA = 0) then

restartPC  PC
branchAdjust  4 /* Possible adjustment for delay slot */

elseif (Config1CA = 1) /* MIPS16 is implemented */
restartPC  PC..1  ISAMode
if (ISAMode = 0) or ExtendedMIPS16Instruction

branchAdjust  4 /* Possible adjustment for 32-bit MIPS delay slot */
else

branchAdjust  2 /* Possible adjustment for MIPS16 delay slot */
endif

elseif (Config3ISA = 1) /* only microMIPS is implemented */
restartPC  PC
branchAdjust  BDSlotInstrSize/* Adjust for microMIPS delay slot */

elseif (Config3ISA > 1) /* both MIPS32/64 & microMIPS are implemented */
restartPC  PC..1  ISAMode
if (ISAMode = 0)

branchAdjust  4 /* Possible adjustment for 32-bit MIPS delay slot */
else

branchAdjust  BDSlotInstrSize/* Adjust for microMIPS delay slot */
endif

endif

No Upper 31 bits of the address of the instruction, combined
with the ISA Mode bit

Yes Upper 31 bits of the branch or jump instruction (PC-2 or
PC-4 depending on size of the instruction in the micro-
MIPS ISA Mode and PC-4 in the 32-bit ISA Mode), com-
bined with the ISA Mode bit

Table 4.9 Value Stored in EPC, ErrorEPC, or DEPC on an Exception

In Branch/Jump
Delay Slot? Value stored in EPC/ErrorEPC/DEPC

4.6 General Exception Processing

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 67

if InstructionInBranchDelaySlot then
EPC  restartPC/* PC of branch/jump */
CauseBD  1

else
EPC  restartPC /* PC of instruction */
CauseBD  0

endif

/* Compute vector offsets as a function of the type of exception */
NewShadowSet  SRSCtlESS /* Assume exception, Release 2 only */
if ExceptionType = TLBRefill then

vectorOffset  0x000
elseif (ExceptionType = Interrupt) then

if (CauseIV = 0) then
vectorOffset  0x180

else
if (StatusBEV = 1) or (IntCtlVS = 0) then

vectorOffset  0x200
else

if Config3VEIC = 1 then
if (EIC_option1)

VecNum  CauseRIPL
elseif (EIC_option2)

VecNum  EIC_VecNum_Signal
endif
NewShadowSet  SRSCtlEICSS

else
VecNum  VIntPriorityEncoder()
NewShadowSet  SRSMapIPL4+3..IPL4

endif
if (EIC_option3)

vectorOffset  EIC_VectorOffset_Signal
else

vectorOffset  0x200 + (VecNum  (IntCtlVS  0b00000))
endif

endif /* if (StatusBEV = 1) or (IntCtlVS = 0) then */
endif /* if (CauseIV = 0) then */

endif /* elseif (ExceptionType = Interrupt) then */

/* Update the shadow set information for an implementation of */
/* Release 2 of the architecture */
if (ArchitectureRevision  2) and (SRSCtlHSS  0) and (StatusBEV = 0) then

/* It is implementation-dependent whether this update occurs */
/* if StatusERL = 1. */
SRSCtlPSS  SRSCtlCSS
SRSCtlCSS  NewShadowSet

endif
endif /* if StatusEXL = 1 then */

CauseCE  FaultingCoprocessorNumber
CauseExcCode  ExceptionType
StatusEXL  1

if Config1CA = 1 then
ISAMode  0

endif
if Config3ISA > 1 then

ISAMode  Config3ISAOnExc

 Exceptions and Interrupts in the M6200 Core

68 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

endif

/* Calculate the vector base address */
if StatusBEV = 1 then

vectorBase  0xBFC0.0200
else

if ArchitectureRevision  2 then
/* The fixed value of EBase31..30 forces the base to be in kseg0 or kseg1 */
vectorBase  EBase31..12  0x000

else
vectorBase  0x8000.0000

endif
endif

/* Exception PC is the sum of vectorBase and vectorOffset. Vector */
/* offsets > 0xFFF (vectored or EIC interrupts only), require */
/* that EBase15..12 have zeros in each bit position less than or */
/* equal to the most significant bit position of the vector offset */
PC  vectorBase31..30  (vectorBase29..0 + vectorOffset29..0)

/* No carry between bits 29 and 30 */

4.7 Debug Exception Processing

All debug exceptions have the same basic processing flow:

• The DEPC register is loaded with the program counter (PC) value at which execution will be restarted and the
DBD bit is set appropriately in the Debug register. The value loaded into the DEPC register is the current PC if
the instruction is not in the delay slot of a branch, or the PC-4 of the branch if the instruction is in the delay slot
of a branch.

• The DSS, DBp, DDBL, DDBS, DIB, DINT, DIBImpr, DDBLImpr, and DDBSImpr bits in the Debug register are
updated appropriately depending on the debug exception type.

• The Debug2 register is updated with additional information for complex breakpoints.

• Halt and Doze bits in the Debug register are updated appropriately.

• DM bit in the Debug register is set to 1.

• The processor is started at the debug exception vector.

The value loaded into DEPC represents the restart address for the debug exception and need not be modified by the
debug exception handler software in the usual case. Debug software need not look at the DBD bit in the Debug regis-
ter unless it wishes to identify the address of the instruction that actually caused the debug exception.

A unique debug exception is indicated through the DSS, DBp, DDBL, DDBS, DIB, DINT, DIBImpr, DDBLImpr, and
DDBSImpr bits in the Debug register.

No other CP0 registers or fields are changed due to the debug exception, thus no additional state is saved.

Operation:

if InstructionInBranchDelaySlot then
DEPC  PC-4

4.8 Exception Descriptions

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 69

DebugDBD  1
else

DEPC  PC
DebugDBD  0

endif
DebugD* bits  DebugExceptionType
DebugHalt  HaltStatusAtDebugException
DebugDoze  DozeStatusAtDebugException
DebugDM  1
if OCI CONTROLRegisterProbTrap = 1 then

PC  0xFF20_0200
else

PC  0xBFC0_0480
endif

The same debug exception vector location is used for all debug exceptions. The location is determined by the Prob-
Trap bit in the OCI CONTROL Register (OCR), as shown in Table 4.10

4.8 Exception Descriptions

The following subsections describe each of the exceptions listed in the same order as shown in Table 4.1.

4.8.1 Reset Exception

A reset exception occurs when the SI_ColdResetN signal is asserted to the processor. This exception is not maskable.
When this exception occurs, the processor performs a full reset initialization, including aborting state machines,
establishing critical state, and generally placing the processor in a state in which it can execute instructions from
uncached, unmapped address space. On a Reset/WarmReset exception, the state of the processor is not defined, with
the following exceptions:

• The Config, Config1, Config2, and Config3 registers are initialized with their boot state.

• The RP, BEV, TS, SR, NMI, and ERL fields of the Status register are initialized to a specified state.

• Watch register enables and Performance Counter register interrupt enables are cleared.

• The ErrorEPC register is loaded with the restart PC, as described in Table 4.9. Note that this value may or may
not be predictable if the Reset Exception was taken as the result of power being applied to the processor because
PC may not have a valid value in that case. In some implementations, the value loaded into ErrorEPC register
may not be predictable on either a Reset or Soft Reset Exception.

• PC is loaded with 0xBFC0_0000.

Table 4.10 Debug Exception Vector Location

OCRProbEn OCRProbTrap OCRRDVec Debug Exception Vector Address

x 0 0 0xFFFF FFFF BFC0 0480

x 0 1 0xFFFF FFFF 0000 0000 +
(DebugVectorAddr31 1  0)

1 1 0 0xFFFF FFFF FF20 0200 in dmseg

1 1 1

 Exceptions and Interrupts in the M6200 Core

70 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

Cause Register ExcCode Value:

None

Additional State Saved:

None

Entry Vector Used:

Reset (0xBFC0_0000)

Operation:

Wired  0
HWREna  0
StatusBEV  1
StatusTS  0
StatusSR  0
StatusNMI  0
StatusERL  1
IntCtlVS  0
SRSCtlHSS  HighestImplementedShadowSet
SRSCtlESS  0
SRSCtlPSS  0
SRSCtlCSS  0
SRSMap  0
CauseDC  0
EBaseExceptionBase  0
Config  ConfigurationState
ConfigK0  2 # Suggested - see Config register description
Config1  ConfigurationState
Config2  ConfigurationState
Config3  ConfigurationState
WatchLo[n]I  0 # For all implemented Watch registers
WatchLo[n]R  0 # For all implemented Watch registers
WatchLo[n]W  0 # For all implemented Watch registers
PerfCnt.Control[n]IE  0 # For all implemented PerfCnt registers
if (Config1CA = 0 & Config3ISA = 0) then

restartPC  PC
branchAdjust  4 # Possible adjustment for delay slot

elseif (Config1CA = 1) then /* MIPS16 implemented */
restartPC  PC31..1  ISAMode
if (ISAMode = 0) or ExtendedMIPS16Instruction

branchAdjust  4 # Possible adjustment for 32-bit MIPS delay slot
else

branchAdjust  2 # Possible adjustment for MIPS16e delay slot
endif
ISAMode  0

elseif (Config3ISA = 1) /* only microMIPS is implemented */
restartPC  PC
branchAdjust  BDSlotInstrSize/* Adjust for microMIPS delay slot */

elseif (Config3ISA > 1) /* both MIPS32/64 & microMIPS are implemented */
restartPC  PC31..1  ISAMode
if (ISAMode = 0)

branchAdjust  4 /* Possible adjustment for 32-bit MIPS delay slot */
else

branchAdjust  BDSlotInstrSize/* Adjust for microMIPS delay slot */
endif
ISAMode  Config3ISA ==3

4.8 Exception Descriptions

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 71

endif
if InstructionInBranchDelaySlot then

ErrorEPC  restartPC - branchAdjust # PC of branch/jump
else

ErrorEPC  restartPC # PC of instruction
endif
PC  0xBFC0 0000

4.8.2 Soft Reset Exception

A Soft Reset Exception occurs when the SI_WarmResetN signal is asserted. This exceptions is not maskable. When a
Soft Reset Exception occurs, the processor performs a subset of the full reset initialization. Although a Soft Reset
Exception does not unnecessarily change the state of the processor, it may be forced to do so in order to place the pro-
cessor in a state in which it can execute instructions from uncached, unmapped address space. Since bus, cache, or
other operations may be interrupted, portions of the cache, memory, or other processor state may be inconsistent.

The primary difference between the Reset and Soft Reset Exceptions is in actual use. The Reset Exception is typically
used to initialize the processor on power-up, while the Soft Reset Exception is typically used to recover from a
non-responsive (hung) processor. The semantic difference is provided to allow boot software to save critical copro-
cessor 0 or other register state to assist in debugging the potential problem. As such, the processor may reset the same
state when either reset signal is asserted, but the interpretation of any state saved by software may be very different.

In addition to any hardware initialization required, the following state is established on a Soft Reset Exception:

• The BEV, TS, SR, NMI, and ERL fields of the Status register are initialized to a specified state.

• The ErrorEPC register is loaded with the restart PC, as described in Table 4.9.

• PC is loaded with 0xBFC0 0000.

Cause Register ExcCode Value

None

Additional State Saved

None

Entry Vector Used

Reset (0xBFC0 0000)

Operation

ConfigK0  2 # Suggested - see Config register description
StatusBEV  1
StatusTS  0
StatusSR  1
StatusNMI  0
StatusERL  1
PerfCnt.Control[n]IE  0 # For all implemented PerfCnt registers
if (Config1CA = 0 & Config3ISA = 0)then

restartPC  PC
branchAdjust  4 # Possible adjustment for delay slot

elseif (Config1CA = 1) then
restartPC  PC31..1 || ISAMode
if (ISAMode = 0) or ExtendedMIPS16Instruction

 Exceptions and Interrupts in the M6200 Core

72 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

branchAdjust  4 # Possible adjustment for 32-bit MIPS delay slot
else

branchAdjust  2 # Possible adjustment for MIPS16e delay slot
endif
ISAMode  0

elseif (Config3ISA = 1) /* only microMIPS is implemented */
restartPC  PC
branchAdjust  BDSlotInstrSize/* Adjust for microMIPS delay slot */

elseif (Config3ISA > 1) /* both MIPS32/64 & microMIPS are implemented */
restartPC  PC31..1  ISAMode
if (ISAMode = 0)

branchAdjust  4 /* Possible adjustment for 32-bit MIPS delay slot */
else

branchAdjust  BDSlotInstrSize/* Adjust for microMIPS delay slot */
endif
ISAMode  Config3ISA ==3

endif
if InstructionInBranchDelaySlot then

ErrorEPC  restartPC - branchAdjust # PC of branch/jump
else

ErrorEPC  restartPC # PC of instruction
endif
PC  0xBFC0 0000

4.8.3 Debug Single Step Exception

When single-step mode is enabled, a Debug Single Step exception occurs each time the processor has taken a single
execution step in Non-Debug Mode. An execution step is a single instruction, or an instruction pair consisting of a
jump/branch instruction and the instruction in the associated delay slot. The SSt bit in the Debug register enables
Debug Single Step exceptions. They are disabled on the first execution step after a DERET.

The DEPC register points to the instruction on which the Debug Single Step Exception occurred, which is also the
next instruction to execute when returning from Debug Mode. The debug software can examine the system state
before this instruction is executed. Thus the DEPC will not point to the instruction(s) that have just executed in the
execution step, but rather the instruction following the execution step. The Debug Single Step Exception never occurs
on an instruction in a jump/branch delay slot, because the jump/branch and the instruction in the delay slot are always
executed in one execution step; thus the DBD bit in the Debug register is never set for a Debug Single Step Excep-
tion.

Exceptions occurring on the instruction(s) executed with debug single step exception enabled are taken even though
debug single step was enabled. For a normal exception (other than reset), a debug single step exception is then taken
on the first instruction in the normal exception handler. Debug exceptions are unaffected by single-step mode, e.g.
returning to a SDBBP instruction with debug single step exceptions enabled causes a debug software breakpoint
exception, and DEPC points to the SDBBP instruction. However, returning to an instruction (not jump/branch) just
before the SDBBP instruction, causes a debug single step exception with the DEPC pointing to the SDBBP instruc-
tion.

To ensure proper functionality of single step, the Debug Single Step Exception has priority over all other exceptions
except reset and soft reset.

Note that the Debug Single Step Exception is only possible when the NoSSt bit in the Debug register is 0.

Debug Register Debug Status Bit Set

DSS

4.8 Exception Descriptions

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 73

Additional State Saved

None

Entry Vector Used

Debug exception vector

4.8.4 Debug Interrupt Exception

A debug interrupt exception is either caused by the DbgBrk bit in the OCI CONTROL register, or caused by the
debug interrupt request signal to the CPU.

The debug interrupt exception is an asynchronous debug exception that is taken as soon as possible, but with no spe-
cific relation to the executed instructions. The DEPC register is set to the instruction where execution should continue
after the debug handler is through. The DBD bit is set based on whether the interrupted instruction was executing in
the delay slot of a branch.

Debug Register Debug Status Bit Set

DINT

Additional State Saved

None

Entry Vector Used

Debug exception vector

4.8.5 Non-Maskable Interrupt (NMI) Exception/

A non maskable interrupt exception occurs when the SI_NMI signal is asserted to the processor. SI_NMI is an edge
sensitive signal - only one NMI exception will be taken each time it is asserted. An NMI exception occurs only at
instruction boundaries, so it does not cause any reset or other hardware initialization. The state of the cache, memory,
and other processor states are consistent and all registers are preserved, with the following exceptions:

• The BEV, TS, SR, NMI, and ERL fields of the Status register are initialized to a specified state.

• The ErrorEPC register is loaded with PC-4 if the state of the processor indicates that it was executing an instruc-
tion in the delay slot of a branch. Otherwise, the ErrorEPC register is loaded with PC.

• PC is loaded with 0xBFC0_0000.

Cause Register ExcCode Value:

None

Additional State Saved:

None

Entry Vector Used:

Reset (0xBFC0_0000)

Operation:

StatusBEV  1

 Exceptions and Interrupts in the M6200 Core

74 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

StatusTS  0
StatusSR  0
StatusNMI  1
StatusERL  1
if (Config1CA = 0 & Config3ISA = 0) then

restartPC  PC
branchAdjust  4 # Possible adjustment for delay slot

elseif (Config1CA = 1) then /* MIPS16 is implemented */
restartPC  PC31..1 || ISAMode
if (ISAMode = 0) or ExtendedMIPS16Instruction

branchAdjust  4 # Possible adjustment for 32-bit MIPS delay slot
else

branchAdjust  2 # Possible adjustment for MIPS16e delay slot
endif
ISAMode  0

elseif (Config3ISA = 1) /* only microMIPS is implemented */
restartPC  PC
branchAdjust  BDSlotInstrSize/* Adjust for microMIPS delay slot */

elseif (Config3ISA > 1) /* both MIPS32/64 & microMIPS are implemented */
restartPC  PC33..1  ISAMode
if (ISAMode = 0)

branchAdjust  4 /* Possible adjustment for 32-bit MIPS delay slot */
else

branchAdjust  BDSlotInstrSize/* Adjust for microMIPS delay slot */
endif
ISAMode  Config3ISA ==3

endif
if InstructionInBranchDelaySlot then

ErrorEPC  restartPC # PC of branch/jump
else

ErrorEPC  restartPC # PC of instruction
endif
PC  0xBFC0 0000

4.8.6 Interrupt Exception

The interrupt exception occurs when one or more of the eight hardware, two software, or timer interrupt requests is
enabled by the Status register, and the interrupt input is asserted. See 4.3 “Interrupts” on page 51 for more details
about the processing of interrupts.

Register ExcCode Value:

Int

Additional State Saved:

Entry Vector Used:

General exception vector (offset 0x180) if the IV bit in the Cause register is zero.

Interrupt vector (offset 0x200) if the IV bit in the Cause register is one.

See 4.3.2 “Generation of Exception Vector Offsets for Vectored Interrupts” on page 59 for the entry vector used,

Table 4.11 Register States an Interrupt Exception

Register State Value

CauseIP indicates the interrupts that are pending.

4.8 Exception Descriptions

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 75

depending on the interrupt mode the processor is operating in.

4.8.7 Debug Instruction Break Exception

A debug instruction break exception occurs when an instruction hardware breakpoint matches an executed instruc-
tion. The DEPC register and DBD bit in the Debug register indicate the instruction that caused the instruction hard-
ware breakpoint to match. This exception can only occur if instruction hardware breakpoints are implemented.

Debug Register Debug Status Bit Set:

DIB

Additional State Saved:

None

Entry Vector Used:

Debug exception vector

4.8.8 Address Error Exception — Instruction Fetch/Data Access

An address error exception occurs under the following circumstances:

• An instruction is fetched from an address that is not aligned on a word boundary.

• A load or store word instruction is executed in which the address is not aligned on a word boundary.

• A load or store halfword instruction is executed in which the address is not aligned on a halfword boundary.

• A reference is made to a kernel address space from User Mode.

• A reference is made to a supervisor address space from User Mode.

Note that in the case of an instruction fetch that is not aligned on a word boundary, PC is updated before the condition
is detected. Therefore, both EPC and BadVAddr point to the unaligned instruction address. In the case of a data access
the exception is taken if either an unaligned address or an address that was inaccessible in the current processor mode
was referenced by a load or store instruction.

Cause Register ExcCode Value:

AdEL: Reference was a load or an instruction fetch

AdES: Reference was a store

Additional State Saved:

Entry Vector Used:

General exception vector (offset 0x180)

Table 4.12 CP0 Register States on an Address Exception Error

Register State Value

BadVAddr Failing address

 Exceptions and Interrupts in the M6200 Core

76 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

4.8.9 SRAM Interface Parity Error Exception

An SRAM interface error exception occurs when an instruction or data reference detects a data parity error. This
exception is not maskable. The exception vector is to an unmapped, uncached address. When detected internally, this
exception is imprecise on the M6200.

Cause Register ExcCode Value

CacheErr: The CacheErr code is used to represent that an error in transmis sion was detected. For details, refer to the
CacheErr and CacheErrAddr registers.

Additional State Saved

Entry Vector Used

SRAM interface parity error vector (offset 0x100)

4.8.10 SRAM ECC Error Exception

An SRAM ECC Error exception occurs when an instruction or data reference detects an ECC error. This exception is
not maskable. The exception vector is to an unmapped, uncached address. This exception is imprecise on the M6200.

Cause Register ExcCode Value

CacheErr: The CacheErr code is used to represent that an error in transmis sion was detected. For details, refer to the
CacheErr and CacheErrAddr registers.

Additional State Saved

Entry Vector Used

SRAM ECC error vector (offset 0x100)

4.8.11 Bus Error Exception — Instruction Fetch or Data Access

A bus error exception occurs when an instruction or data access makes a bus request and that request terminates in an
error. The bus error exception can occur on either an instruction fetch or a data access. Bus error exceptions that occur
on an instruction fetch have a higher priority than bus error exceptions that occur on a data access.

By default, bus errors on instruction accesses are returned immediately with the read data (if available). When fetch-
ing speculatively, the M6200 core will save these errors until the fetch becomes critical and will then be executed.

Table 4.13 CP0 Register States on a SRAM Interface Parity Error Exception

Register State Value

CacheErr Address of error detected

ErrorEPC Restart PC

Table 4.14 CP0 Register States on an SRAM ECC Error Exception

Register State Value

CacheErr Address of error detected

ErrorEPC Restart PC

4.8 Exception Descriptions

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 77

For bus error exceptions on data read accesses, all data reads are considered critical and bus error exceptions are
taken immediately.

For bus error exceptions on data write accesses, the write response is typically expected to return on the next cycle.
However, if the response is delayed, it can be sent later on the port DS_BError. These error responses will cause the
core to take an imprecise bus error exception; however, it does not accurately update the ErrorEPC value, and soft-
ware is responsible for verifying the state of the CPU caused by the imprecise error exception.

Cause Register ExcCode Value:

IBE: Error on an instruction reference

DBE: Error on a data reference

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

4.8.12 Protection Exception

The protection exception occurs when an access to memory that has been protected by the Memory Protection Unit
has been attempted. Or under certain circumstances, attempted write to the EBase register. See the Security Features
of the M6200 Processor Family [4] for more information.

Register ExcCode Value:

Prot (Cause Code 29)

Additional State Saved:

MPU Config Register, Triggered Field

MPU StatusN Register, Cause* Fields

BadVAddr, triggered address

BadInstr (data-triggered protection exceptions only)

BadInstrP

Entry Vector Used

General exception vector (offset 0x180)

4.8.13 Debug Software Breakpoint Exception

A debug software breakpoint exception occurs when an SDBBP instruction is executed. The DEPC register and DBD
bit in the Debug register will indicate the SDBBP instruction that caused the debug exception.

Debug Register Debug Status Bit Set:

DBp

Additional State Saved:

None

 Exceptions and Interrupts in the M6200 Core

78 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

Entry Vector Used:

Debug exception vector

4.8.14 Execution Exception — System Call

The system call exception is one of the execution exceptions. A system call exception occurs when a SYSCALL
instruction is executed.

Cause Register ExcCode Value:

Sys

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

4.8.15 Execution Exception — Breakpoint

The breakpoint exception is one of the execution exceptions. All of these exceptions have the same priority. A break-
point exception occurs when a BREAK instruction is executed.

Cause Register ExcCode Value:

Bp

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

4.8.16 Execution Exception — Reserved Instruction

The reserved instruction exception is one of the execution exceptions. All of these exceptions have the same priority.
A reserved instruction exception occurs when a reserved or undefined major opcode or function field is executed.
This includes Coprocessor 2 instructions which are decoded reserved in the Coprocessor 2. On the M6200 core, the
priority between RI exceptions and other execution exceptions is dependent on the ISA mode. If the core is operating
in microMIPS mode, an RI exception is flagged if the opcode does not refer to a defined instruction, or if the hard-
ware resources for this instruction are not configured/present. If the core is operating in MIPS32 mode, and the
instruction falls in one of the privileged resource groups identified by the major opcode CP0, COP1, COP2, or DSP
minor opcodes, then the CPU flags a Coprocessor Unusable exception; else, an undefined instruction will cause an RI
exception.

Cause Register ExcCode Value:

RI

Additional State Saved:

None

4.8 Exception Descriptions

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 79

Entry Vector Used:

General exception vector (offset 0x180)

4.8.17 Execution Exception — Coprocessor Unusable

The coprocessor unusable exception is one of the execution exceptions. A coprocessor unusable exception occurs
when an attempt is made to execute a coprocessor instruction for one of the following:

• A corresponding coprocessor unit that has not been marked usable by setting its CU bit in the Status register

• CP0 instructions when the processor is executing in User Mode

Cause Register ExcCode Value:

CpU

Additional State Saved:

Entry Vector Used:

General exception vector (offset 0x180)

4.8.18 Execution Exception — DSP Module State Disabled

The DSP Module State Disabled exception is an execution exception. It occurs when an attempt is made to execute a
DSP Module instruction when the MX bit in the Status register is not set. This allows an OS to do “lazy” context
switching.

Cause Register ExcCode Value:

DSPDis

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

4.8.19 Execution Exception — Coprocessor 2 Exception

The Coprocessor 2 exception is one of the execution exceptions. A Coprocessor 2 exception occurs when a valid
Coprocessor 2 instruction cause a general exception in the Coprocessor 2.

Cause Register ExcCode Value:

C2E

Table 4.15 Register States on a Coprocessor Unusable Exception

Register State Value

CauseCE Unit number of the coprocessor being referenced

 Exceptions and Interrupts in the M6200 Core

80 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

Additional State Saved:

Depending on the Coprocessor 2 implementation, additional state information of the exception can be saved in a
Coprocessor 2 control register.

Entry Vector Used:

General exception vector (offset 0x180)

4.8.20 Execution Exception — Implementation-Specific 1 Exception

The Implementation-Specific 1 exception is one of the execution exceptions. An implementation-specific 1 exception
occurs when a valid coprocessor 2 instruction cause an implementation-specific 1 exception in the Coprocessor 2.

Cause Register ExcCode Value:

IS1

Additional State Saved:

Depending on the coprocessor 2 implementation, additional state information of the exception can be saved in a
coprocessor 2 control register.

Entry Vector Used:

General exception vector (offset 0x180)

4.8.21 Execution Exception — Integer Overflow

The integer overflow exception is one of the execution exceptions. An integer overflow exception occurs when
selected integer instructions result in a 2’s complement overflow.

Cause Register ExcCode Value:

Ov

Additional State Saved:

None

Entry Vector Used:

General exception vector (offset 0x180)

4.8.22 Debug Data Break Exception

A debug data break exception occurs when a data hardware breakpoint matches the load/store transaction of an exe-
cuted load/store instruction. The DEPC register and DBD bit in the Debug register will indicate the load/store instruc-
tion that caused the data hardware breakpoint to match. The load/store instruction that caused the debug exception
has not completed e.g. not updated the register file, and the instruction can be re-executed after returning from the
debug handler.

Debug Register Debug Status Bit Set:

DDBL for a load instruction or DDBS for a store instruction

Additional State Saved:

None

4.9 Exception Handling and Servicing Flowcharts

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 81

Entry Vector Used:

Debug exception vector

4.8.23 Complex Break Exception

A complex data break exception occurs when the complex hardware breakpoint detects an enabled breakpoint. Com-
plex breaks are taken imprecisely—the instruction that actually caused the exception is allowed to complete and the
DEPC register and DBD bit in the Debug register point to a following instruction.

Debug Register Debug Status Bit Set:

DIBImpr, DDBLImpr, and/or DDBSImpr

Additional State Saved:

Debug2 fields indicate which type(s) of complex breakpoints were detected.

Entry Vector Used:

Debug exception vector

4.9 Exception Handling and Servicing Flowcharts

The remainder of this chapter contains flowcharts for the following exceptions and guidelines for their handlers:

• General exceptions and their exception handler

• Reset, soft reset and NMI exceptions, and a guideline to their handler

• Debug exceptions

Chapter 5

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 85

CP0 Registers of the M6200 Core

The System Control Coprocessor (CP0) provides the register interface to the M6200 processor core for the support of
memory management, address translation, exception handling, and other privileged operations. Each CP0 register is
identified by a Register Number, from 0 through 31, and a Select Number that is used as the value in the sel field of
the MFC0 (Move From Coprocessor 0) and MTC0 (Move To Coprocessor 0) instructions. For example, the EBase
register is Register Number 15, Select 1. After updating a CP0 register, there is a hazard period of zero or more
instructions from the update by the MTC0 instruction until the update has taken effect in the core.

The Debug registers are described in Chapter 8, “Debug Support in the M6200 Core” on page 152.

5.1 CP0 Register Summary

Table 5.1 lists the CP0 registers in numerical order. Individual registers are described in Section 5.2 “CP0 Register
Descriptions”.

Table 5.1 CP0 Registers

Register
Number

Select
Number Register Name Function

0-3 Reserved Reserved in the M6200 core

4 2 UserLocal User information that can be written by privileged software and
read via RDHWR register 29

5-6 Reserved Reserved in the M6200 core

7 0 HWREna Enables access via the RDHWR instruction to selected hardware
registers in non-privileged mode

8 0
1
2

BadVAddr
BadInstr
BadInstrP

Reports the address for the most recent address-related exception
Reports the instruction that caused the most recent exception
Reports the branch instruction if a delay slot or forbidden slot
caused the most recent exception

9 0 Count Processor cycle count

10 0 Reserved Reserved in the M6200 core

11 0 Compare Timer interrupt control

12 0
1
2
3
4
5

Status
IntCtl
SRSCtl
SRSMap1
View_IPL
SRSMAP2

Processor status and control
Interrupt system status and control
Shadow Register Sets status and control
Shadow set IPL mapping
Contiguous view of IM and IPL fields
Shadow set IPL mapping

 CP0 Registers of the M6200 Core

86 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

5.2 CP0 Register Descriptions

This section contains descriptions of each CP0 register. The registers are listed in numerical order, first by Register
Number, then by Select Number.

13 0
4
5

Cause
View_RIPL
NestedExc

Cause of last exception
Read access to IP ot RIPL field in Cause register
Supports nested fault feature

14 0
2

EPC
NestedEPc

Program counter at last exception
Supports nested fault feature

15 0
1
2

PRId/
EBase
CDMMBase

Processor identification and revision
Exception base address
Common Device Memory Map Base register

16 0
1
2
3
4
5
7

Config
Config1
Config2
Config3
Config4
Config5
Config7

Configuration registers

17-22 Reserved Reserved in the M6200 core

17 0 LLAddr Load linked address

23 0
3
6

Debug
UserTraceData1
Debug2

Debug register
User Trace Data1 register
Debug register 2

24 0
3

DEPC
UserTraceData2

Program counter at last debug exception
User Trace Data2 register

25 0
1
2
3

PerfCtl0
PerfCnt0
PerfCtl1
PerfCnt1

Performance counter 0 control
Performance counter 0
Performance counter 1control
Performance counter 1

26 0 ErrCtl Software parity check enable

27 0 CacheErr Records information about SRAM ECC errors

27 1 CacheErrAddr Records information about SRAM address of ECC errors

28-29 Reserved Reserved in the M6200 core

30 0 ErrorEPC Program counter at last error

31 0
2
3
4
5
6
7

DeSAVE
KScratch1
Kscratch2
Kscratch3
Kscratch4
Kscratch5
Kscratch6

Debug handler scratchpad register
Scratch Register for Kernel Mode
Scratch Register for Kernel Mode
Scratch Register for Kernel Mode
Scratch Register for Kernel Mode
Scratch Register for Kernel Mode
Scratch Register for Kernel Mode

Table 5.1 CP0 Registers (Continued)

Register
Number

Select
Number Register Name Function

5.2 CP0 Register Descriptions

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 87

For each register described below, field descriptions include the read/write properties of the field (shown in Table
5.2) and the reset state of the field.

5.2.1 UserLocal Register (CP0 Register 4, Select 2)

The UserLocal register is a read-write register that is not interpreted by the hardware and conditionally readable via
the RDHWR instruction.

Figure 5.1 shows the format of the UserLocal register; Table 5.3 describes the UserLocal register fields.

Table 5.2 CP0 Register R/W Field Types

Read/Write
Notation Hardware Interpretation Software Interpretation

R/W A field in which all bits are readable and writable by software and, potentially, by hardware.
Hardware updates of this field are visible by software reads. Software updates of this field are vis-
ible by hardware reads.
If the reset state of this field is “Undefined,” either software or hardware must initialize the value
before the first read will return a predictable value. This should not be confused with the formal
definition of UNDEFINED behavior.

R A field that is either static or is updated only by
hardware.
If the Reset State of this field is either “0” or
“Preset”, hardware initializes this field to zero
or to the appropriate state, respectively, on pow-
erup.
If the Reset State of this field is “Undefined”,
hardware updates this field only under those
conditions specified in the description of the
field.

A field to which the value written by software is
ignored by hardware. Software may write any
value to this field without affecting hardware
behavior. Software reads of this field return the
last value updated by hardware.
If the Reset State of this field is “Undefined,”
software reads of this field result in an UNPRE-
DICTABLE value except after a hardware
update done under the conditions specified in
the description of the field.

W A field that can be written by software but which can not be read by software.
Software reads of this field will return an UNDEFINED value.

0 A field that hardware does not update, and for
which hardware can assume a zero value.

Software reads of this field return zero. Soft-
ware writes of non-zero values to this field are
ignored.

 CP0 Registers of the M6200 Core

88 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

Figure 5.1 UserLocal Register Format

Programming Notes

Privileged software may write this register with arbitrary information and make it accessible to unprivileged software
via register 29 (ULR) of the RDHWR instruction. To do so, bit 29 of the HWREna register must be set to 1 to enable
unprivileged access to the register. In some operating environments, the UserLocal register contains a pointer to a
thread-specific storage block that is obtained via the RDHWR register.

5.2.2 HWREna Register (CP0 Register 7, Select 0)

The HWREna register contains a bit mask that determines which hardware registers are accessible via the RDHWR
instruction when that instruction is executed in a mode in which Coprocessor 0 is not enabled.

Figure 5.2 shows the format of the HWREna Register; Table 5.4 describes the HWREna register fields.

31 0

UserLocal

Table 5.3 UserLocal Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bit(s)

UserLocal 31:0 This field contains software information that is not interpreted by
hardware.

R/W Undefined

Figure 5.2 HWREna Register Format

31 30 29 28 4 3 0

0 ULR 0 Mask

Table 5.4 HWREna Register Field Descriptions

Fields

Description Read/Write Reset StateName Bits

0 31:30 Must be written with zero; returns zero on read 0 0

0 28:4 Must be written with zero; returns zero on read 0 0

ULR 29 User Local Register. This register provides read access to the
coprocessor 0 UserLocal register. In some operating envi-
ronments, the UserLocal register is a pointer to a thread-spe-
cific storage block.

R/W 0

Mask 3:0 Each bit in this field enables access by the RDHWR instruc-
tion to a particular hardware register (which may not be an
actual register). If bit ‘n’ in this field is a 1, access is enabled
to hardware register ‘n’. If bit ‘n’ of this field is a 0, access is
disabled.
See the RDHWR instruction for a list of valid hardware reg-
isters.

R/W 0

5.2 CP0 Register Descriptions

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 89

Privileged software may determine which of the hardware registers are accessible by the RDHWR instruction. In
doing so, a register may be virtualized at the cost of handling a Reserved Instruction Exception, interpreting the
instruction, and returning the virtualized value. For example, if it is not desirable to provide direct access to the Count
register, access to that register may be individually disabled and the return value can be virtualized by the operating
system.

5.2.3 BadVAddr Register (CP0 Register 8, Select 0)

The BadVAddr register is a read-only register that captures the most recent virtual address that caused the following
exception:

• Address error (AdEL or AdES)

• Memory Protection exception

The BadVAddr register does not capture address information for bus errors, because they are not addressing errors.

Figure 5.3 BadVAddr Register Format

5.2.4 BadInstr Register (CP0 Register 8, Select 1)

The BadInstr register is a read-only register that captures the most recent instruction that caused one of the following
exceptions:

• Execution Exception:

Integer Overflow, Trap, System Call, Breakpoint, Floating-point, Coprocessor 2 exception, Memory Protection
exception (applicable to data-triggered memory protection exceptions only), Coprocessor Unusable, Reserved
Instruction

• Addressing:

Address Error, TLB Refill, TLB Invalid, TLB Read Inhibit, TLB Execute Inhibit, TLB Modified

The BadInstr register is provided to allow acceleration of instruction emulation. The BadInstr register is only set by
exceptions that are synchronous to an instruction. The BadInstr register is not set by interrupts or by NMI,
Machine check, Bus Error, SRAM ECC error, SRAM Parity error, or Debug exceptions.

When a synchronous exception occurs for which there is no valid instruction word (for example TLB Refill - Instruc-
tion Fetch), the value stored in BadInstr is UNPREDICTABLE.

Presence of the BadInstr register is indicated by the Config3BI bit.

31 0

BadVAddr

Table 5.5 BadVAddr Register Field Description

Fields

Description Read/Write Reset StateName Bits

BadVAddr 31:0 Bad virtual address. R Undefined

 CP0 Registers of the M6200 Core

90 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

Figure 5.4 shows the proposed format of the BadInstr register; Table 5.6 describes the BadInstr register fields.

Figure 5.4 BadInstr Register Format

5.2.5 BadInstrP Register (CP0 Register 8, Select 2)

The BadInstrP register is an optional register that is used in conjunction with the BadInstr register. The BadInstrP reg-
ister contains the prior branch instruction when the faulting instruction is in a branch delay slot or forbidden slot.

The BadInstrP register is updated for these exceptions:

• Execution Exception

Integer Overflow, Trap, System Call, Breakpoint, Floating-point, Coprocessor 2 exception, Memory Protection
exception (applicable to data-triggered memory protection exceptions only), Coprocessor Unusable, Reserved
Instruction

• Addressing

Address Error, TLB Refill, TLB Invalid, TLB Read Inhibit, TLB Execute Inhibit, TLB Modified

The BadInstrP register is provided to allow acceleration of instruction emulation. The BadInstrP register is only set by
exceptions that are synchronous to an instruction. The BadInstrP register is not set by Interrupts or by NMI, Machine
check, Bus Error, SRAM ECC error, SRAM Parity error, or Debug exceptions. When a synchronous exception
occurs, and the faulting instruction is not in a branch delay slot or forbidden slot, then the value stored in BadInstrP is
UNPREDICTABLE.

Presence of the BadInstrP register is indicated by the Config3BP bit. The BadInstrP register is instantiated per-VPE in
an MT ASE processor.

Figure 5.5 shows the proposed format of the BadInstrP register; Table 5.7 describes the BadInstrP register fields.

31 0

BadInstr

Table 5.6 BadInstr Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

BadInstr 31:0 Faulting instruction word.
Instruction words smaller than 32 bits are placed in bits
15:0, with bits 31:16 containing zero.

R Undefined

5.2 CP0 Register Descriptions

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 91

Figure 5.5 BadInstrP Register Format

5.2.6 Count Register (CP0 Register 9, Select 0)

The Count register acts as a timer, incrementing at a constant rate, whether or not an instruction is executed, retired,
or any forward progress is made through the pipeline. The counter increments every other clock if the DC bit in the
Cause register is 0.

The Count register can be written for functional or diagnostic purposes, including at reset or to synchronize proces-
sors.

By writing the CountDM bit in the Debug register, it is possible to control whether the Count register continues incre-
menting while the processor is in debug mode.

Figure 5.6 Count Register Format

5.2.7 Compare Register (CP0 Register 11, Select 0)

The Compare register acts in conjunction with the Count register to implement a timer and timer interrupt function.
The timer interrupt is an output of the cores. The Compare register maintains a stable value and does not change on its
own.

When the value of the Count register equals the value of the Compare register, the SI_TimerInt pin is asserted. This
pin will remain asserted until the Compare register is written. The SI_TimerInt pin can be fed back into the core on
one of the interrupt pins to generate an interrupt.

For diagnostic purposes, the Compare register is a read/write register. In normal use, however, the Compare register
is write-only. Writing a value to the Compare register, as a side effect, clears the timer interrupt.

31 0

BadInstrP

Table 5.7 BadInstrP Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

BadInstrP 31:0 Prior branch instruction.
Instruction words smaller than 32 bits are placed in bits
15:0, with bits 31:16 containing zero.

R Undefined

31 0

Count

Table 5.8 Count Register Field Description

Fields

Description Read/Write Reset StateName Bits

Count 31:0 Interval counter. R/W Undefined

 CP0 Registers of the M6200 Core

92 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

Figure 5.7 Compare Register Format

5.2.8 Status Register (CP0 Register 12, Select 0)

The Status register is a read/write register that contains the operating mode, interrupt enabling, and the diagnostic
states of the processor. Fields of this register combine to create operating modes for the processor. Refer to
3.2 “Modes of Operation” on page 38 for a discussion of operating modes, and 4.3 “Interrupts” on page 51 for a dis-
cussion of interrupt modes.

Interrupt Enable: Interrupts are enabled when all of the following conditions are true:

• IE = 1

• EXL = 0

• ERL = 0

• DM = 0

If these conditions are met, then the settings of the IM and IE bits enable the interrupts.

Operating Modes: If the DM bit in the Debug register is 1, then the processor is in debug mode; otherwise the pro-
cessor is in either kernel or user mode. The following CPU Status register bit settings determine user or kernel mode:

• User mode: UM = 1, EXL = 0, and ERL = 0

• Kernel mode: UM = 0, or EXL = 1, or ERL = 1

Coprocessor Accessibility: The Status register CU bits control coprocessor accessibility. If any coprocessor is unus-
able, then an instruction that accesses it generates an exception.

Figure 5.8 shows the format of the Status register; Table 5.10 describes the Status register fields.

31 0

Compare

Table 5.9 Compare Register Field Description

Fields

Description Read/Write Reset StateName Bit(s)

Compare 31:0 Interval count compare value. R/W Undefined

Figure 5.8 Status Register Format

31 29 28 27 25 24 23 22 21 20 19 18 17 16 10 9 8 7 6 5 4 3 2 1 0

CU3..CU1 RW 0 MX R BEV R SR NMI IM9 R IM8..IM2 IM1..IM0 R UM R ERL EXL IE

IPL IPL

5.2 CP0 Register Descriptions

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 93

Table 5.10 Status Register Field Descriptions

Fields

Description Read/Write Reset StateName Bits

CU3 31 Controls access to Coprocessor 3. COP3 is not supported.
This bit cannot be written and will read as 0.

R 0

CU2 30 Controls access to Coprocessor 2. This bit can only be
written if coprocessor is attached to the COP2 interface.
(C2 bit in Config1 is set). This bit will read as 0 if no
coprocessor is present.

R/W 0

CU1 29 Controls access to Coprocessor 1. This bit cannot be writ-
ten and always reads as 0, because an FPU is not sup-
ported.

R 0

RW 28 Read/write field. This bit can be written by software with-
out side-effects. For example, the kernel can set this bit to
signify that the exception condition is due to user code,
before saving Status to the stack in memory.

R/W Undefined

R 27:25 Reserved. This bit must be written as zero; returns zero on
read.

R 0

MX 24 MIPS DSP Extension. Enables access to DSP Module
resources:

An attempt to execute any DSP Module instruction before
this bit has been set to 1 will cause a DSP State Disabled
exception. The state of this bit is reflected in Config3DSPP.

R/W 0

R 23 Reserved. This field is ignored on writes and reads as 0. 0 0

BEV 22 Controls the location of exception vectors: R/W 1

R 21 Reserved. This bit must be written as zero; returns zero on
read.

0 0

SR 20 Indicates that the entry through the reset exception vector
was due to a Soft Reset:

Software can only write a 0 to this bit to clear it and cannot
force a 0-1 transition.

R/W 1 for Soft
Reset; 0 other-

wise

Encoding Meaning

0 Access not allowed

1 Access allowed

Encoding Meaning

0 Normal
1 Bootstrap

Encoding Meaning

0 Not Soft Reset (NMI or Reset)
1 Soft Reset

 CP0 Registers of the M6200 Core

94 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

NMI 19 Indicates that the entry through the reset exception vector
was due to an NMI:

Software can only write a 0 to this bit to clear it and cannot
force a 0-1 transition.

R/W 1 for NMI; 0
otherwise

R 17 Reserved. This field is ignored on writes and reads as 0. 0 0

IM9:IM2 18,
16:10

Interrupt Mask: Controls the enabling of each of the hard-
ware interrupts. Refer to 4.3 “Interrupts” on page 51 for a
complete discussion of enabled interrupts.

In implementations in which EIC interrupt mode is enabled
(Config3VEIC = 1), these bits have a different meaning and
are interpreted as the IPL field, described below.

R/W Undefined for
IM7:IM2

0 for IM9:IM8

IPL 18,
16:10

Interrupt Priority Level.
In implementations in which EIC interrupt mode is enabled
(Config3VEIC = 1), this field is the encoded (0:255) value
of the current IPL. An interrupt will be signaled only if the
requested IPL is higher than this value.
If EIC interrupt mode is not enabled (Config3VEIC = 0),
these bits have a different meaning and are interpreted as
the IM7..IM2 bits, described above.

R/W Undefined for
IPL15:IPL10

0 for
IPL18:IPL17

IM1:IM0 9:8 Interrupt Mask: Controls the enabling of each of the soft-
ware interrupts. Refer to Section 4.3 “Interrupts”for a
complete discussion of enabled interrupts.

In implementations of in which EIC interrupt mode is
enabled, these bits are writable, but have no effect on the
interrupt system.

R/W Undefined

R 7:5 Reserved. This field is ignored on writes and reads as 0. R 0

Table 5.10 Status Register Field Descriptions (Continued)

Fields

Description Read/Write Reset StateName Bits

Encoding Meaning

0 Not NMI (Soft Reset or Reset)
1 NMI

Encoding Meaning

0 Interrupt request disabled
1 Interrupt request enabled

Encoding Meaning

0 Interrupt request disabled
1 Interrupt request enabled

5.2 CP0 Register Descriptions

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 95

UM 4 This bit denotes the base operating mode of the processor.
See Section 3.2 “Modes of Operation” for a full discussion
of operating modes. The encoding of this bit is:

Note that the processor can also be in kernel mode if ERL
or EXL is set, regardless of the state of the UM bit.

R/W Undefined

R 3 This bit is reserved. This bit is ignored on writes and reads
as zero.

R 0

ERL 2 Error Level; Set by the processor when a Reset, Soft Reset,
NMI or SRAM ECC error, SRAM parity error exception is
taken.

When ERL is set:
• The processor is running in kernel mode
• Interrupts are disabled
• The ERET instruction will use the return address held in

ErrorEPC instead of EPC

• The lower 229 bytes of kuseg are treated as an unmapped
and uncached region. See Chapter 3, “Memory
Management of the M6200 Core” on page 37. This
allows main memory to be accessed in the presence of
SRAM Interface Parity or ECC errors. The operation of
the processor is UNDEFINED if the ERL bit is set
while the processor is executing instructions from kuseg.

R/W 1

EXL 1 Exception Level; Set by the processor when any exception
other than Reset, Soft Reset, NMI, and parity or ECC error
exceptions is taken.

When EXL is set:
• The processor is running in Kernel Mode
• Interrupts are disabled.
• EPC, CauseBD and SRSCtl will not be updated if

another exception is taken.

R/W Undefined

Table 5.10 Status Register Field Descriptions (Continued)

Fields

Description Read/Write Reset StateName Bits

Encoding Meaning

0 Base mode is Kernel Mode
1 Base mode is User Mode

Encoding Meaning

0 Normal level
1 Error level

Encoding Meaning

0 Normal level
1 Exception level

 CP0 Registers of the M6200 Core

96 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

5.2.9 IntCtl Register (CP0 Register 12, Select 1)

The IntCtl register controls the interrupt capabilities of the M6200 core, including vectored interrupts and support for
an external interrupt controller.

If vectored interrupts are not implemented (Config3VInt = 0 and Config3VEIC = 0), the IPTI and IPPCI fields must be
implemented as read-only value, but the remaining bits of this register may be implemented as an ignore-revi-
sion-on-write, read-as-zeros register.

Figure 5.9 shows the format of the IntCtl register; Table 5.11 describes the IntCtl register fields.

IE 0 Interrupt Enable: Acts as the master enable for software
and hardware interrupts:

R/W Undefined

Figure 5.9 IntCtl Register Format

31 29 28 26 25 23 22 21 20 16 15 14 13 12 10 9 5 4 0

IPTI IPPCI IPFDC PF ICE StkDec Clr
EXL APE Use

KStk 0 VS 0

Table 5.10 Status Register Field Descriptions (Continued)

Fields

Description Read/Write Reset StateName Bits

Encoding Meaning

0 Interrupts are disabled
1 Interrupts are enabled

5.2 CP0 Register Descriptions

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 97

Table 5.11 IntCtl Register Field Descriptions

Fields

Description Read/Write
Reset
StateName Bits

IPTI 31:29 For Interrupt Compatibility and Vectored Interrupt
modes, this field specifies the IP number to which the
Timer Interrupt request is merged, and allows software
to determine whether to consider CauseTI for a poten-
tial interrupt.

The value of this bit is set by the static input,
SI_IPTI[2:0]. This allows external logic to communi-
cate the specific SI_Int hardware interrupt.
The value of this field is not meaningful if External
Interrupt Controller Mode is enabled. The external inter-
rupt controller is expected to provide this information
for that interrupt mode.

R Externally
Set

IPPCI 28:26 For Interrupt Compatibility and Vectored Interrupt
modes, this field specifies the IP number to which the
Performance Counter Interrupt request is merged, and
allows software to determine whether to consider
CausePCI for a potential interrupt.

The value of this bit is set by the static input,
SI_IPPCI[2:0]. This allows external logic to communi-
cate the specific SI_Int hardware interrupt.
The value of this field is not meaningful if External
Interrupt Controller Mode is enabled. The external inter-
rupt controller is expected to provide this information
for that interrupt mode.

R Preset or
Externally

Set

Encoding IP bit
Hardware Interrupt

Source

2 2 HW0
3 3 HW1
4 4 HW2
5 5 HW3
6 6 HW4
7 7 HW5

Encoding IP bit
Hardware Interrupt

Source

2 2 HW0
3 3 HW1
4 4 HW2
5 5 HW3
6 6 HW4
7 7 HW5

 CP0 Registers of the M6200 Core

98 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

IPFDC 25:23 For Interrupt Compatibility and Vectored Interrupt
modes, this field specifies the IP number to which the
Fast Debug Channel Interrupt request is merged, and
allows software to determine whether to consider
CauseFDC for a potential interrupt.

The value of this field is UNPREDICTABLE if Exter-
nal Interrupt Controller Mode is both implemented and
enabled. The external interrupt controller is expected to
provide this information for that interrupt mode.
If FDC is not implemented, this field returns zero on
read.

R Preset or
Externally
Set

PF 22 Enables Vector Prefetching Feature. R/W 0

ICE 21 For IRET instruction. Enables Interrupt Chaining. R/W 0

StkDec 20:16 For Auto-Prologue feature. This is the number of 4-byte
words that is decremented from the value of GPR29.

R/W 0x3

Table 5.11 IntCtl Register Field Descriptions (Continued)

Fields

Description Read/Write
Reset
StateName Bits

Encoding IP bit
Hardware

Interrupt Source

2 2 HW0

3 3 HW1

4 4 HW2

5 5 HW3

6 6 HW4

7 7 HW5

Encoding Meaning

0 Vector Prefetching disabled.

1 Vector Prefetching enabled.

Encoding Meaning

0 Interrupt Chaining disabled

1 Interrupt Chaining enabled

Encoding

Decrement
Amount in

Words

Decrement
Amount in

Bytes

0-3 3 12

Others As encoded,
e.g. 0x5
means 5
words

4 * encoded
value

e.g. 0x5
means 20

bytes

5.2 CP0 Register Descriptions

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 99

ClrEXL 15 For Auto-Prologue feature and IRET instruction.
If set, during Auto-Prologue and IRET interrupt chain-
ing, the KSU/ERL/EXL fields are cleared.

R/W 0

APE 14 Enables Auto-Prologue feature. R/W 0

UseKStk 13 Chooses which Stack to use during Interrupt Automated
Prologue.

R/W 0

0 12:10 Must be written as zero; returns zero on read. 0 0

Table 5.11 IntCtl Register Field Descriptions (Continued)

Fields

Description Read/Write
Reset
StateName Bits

Encoding Meaning

0 Fields are not cleared by these opera-
tions.

1 Fields are cleared by these operations.

Encoding Meaning

0 Auto-Prologue disabled

1 Auto-Prologue enabled

Encoding Meaning

0 Copy $29 of the Previous SRS to the
Current SRS at the beginning of IAP.

This is used for Bare-Iron environ-
ments with only one stack.

1 Use $29 of the Current SRS at the
beginning of IAP.
This is used for environments where
there are separate User-mode and Ker-
nel mode stacks. In this case, $29 of
the SRS used during IAP must be
pre-initialized by software to hold the
Kernel mode stack pointer.

 CP0 Registers of the M6200 Core

100 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

5.2.10 SRSCtl Register (CP0 Register 12, Select 2)

The SRSCtl register controls the operation of GPR shadow sets in the processor.

Figure 5.10 shows the format of the SRSCtl register; Table 5.12 describes the SRSCtl register fields.

VS 9:5 Vector Spacing. If vectored interrupts are implemented
(as denoted by Config3VInt or Config3VEIC), this field
specifies the spacing between vectored interrupts.

All other values are reserved. The operation of the pro-
cessor is UNDEFINED if a reserved value is written to
this field.

R/W 0

0 4:0 Must be written as zero; returns zero on read. 0 0

Figure 5.10 SRSCtl Register Format

31 30 29 26 25 22 21 18 17 16 15 12 11 10 9 6 5 4 3 0

0 HSS 0 EICSS 0 ESS 0 PSS 0 CSS

Table 5.12 SRSCtl Register Field Descriptions

Fields

Description Read/Write
Reset
StateName Bits

0 31:30 Must be written as zeros; returns zero on read. 0 0

Table 5.11 IntCtl Register Field Descriptions (Continued)

Fields

Description Read/Write
Reset
StateName Bits

Encoding

Spacing
Between

Vectors (hex)

Spacing
Between
Vectors

(decimal)

16#00 16#000 0
16#01 16#020 32
16#02 16#040 64
16#04 16#080 128
16#08 16#100 256
16#10 16#200 512

5.2 CP0 Register Descriptions

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 101

HSS 29:26 Highest Shadow Set. This field contains the highest
shadow set number that is implemented by this proces-
sor. A value of zero in this field indicates that only the
normal GPRs are implemented.
Possible values of this field for the M6200 processor
are:

The value in this field also represents the highest value
that can be written to the ESS, EICSS, PSS, and CSS
fields of this register, or to any of the fields of the
SRSMap register. The operation of the processor is
UNDEFINED if a value larger than the one in this field
is written to any of these other fields.

R Preset

0 25:22 Must be written as zeros; returns zero on read. 0 0

EICSS 21:18 EIC interrupt mode shadow set. If Config3VEIC is 1
(EIC interrupt mode is enabled), this field is loaded from
the external interrupt controller for each interrupt
request and is used in place of the SRSMap register to
select the current shadow set for the interrupt.
See Section 4.3.1 “Interrupt Modes” for a discussion of
EIC interrupt mode. If Config3VEIC is 0, this field must
be written as zero, and returns zero on read.

R Undefined

0 17:16 Must be written as zeros; returns zero on read. 0 0

ESS 15:12 Exception Shadow Set. This field specifies the shadow
set to use on entry to Kernel Mode caused by any excep-
tion other than a vectored interrupt.
The operation of the processor is UNDEFINED if soft-
ware writes a value into this field that is greater than the
value in the HSS field.

R/W 0

0 11:10 Must be written as zeros; returns zero on read. 0 0

Table 5.12 SRSCtl Register Field Descriptions (Continued)

Fields

Description Read/Write
Reset
StateName Bits

Encoding Meaning

0 One shadow set (normal GPR set) is
present.

1 Two shadow sets are present.
3 Four shadow sets are present.
7 Eight shadow sets are present

15 Sixteen shadow sets are present
2, 4-6, 8-14 Reserved

 CP0 Registers of the M6200 Core

102 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

5.2.11 SRSMap1 Register (CP0 Register 12, Select 3)

The SRSMap register contains 8, 4-bit fields that provide the mapping from a vector number to the shadow set num-
ber to use when servicing such an interrupt. The values from this register are not used for a non-interrupt exception,
or a non-vectored interrupt (CauseIV = 0 or IntCtlVS = 0). In such cases, the shadow set number comes from
SRSCtlESS.

If SRSCtlHSS is zero, the results of a software read or write of this register are UNPREDICTABLE.

The operation of the processor is UNDEFINED if a value is written to any field in this register that is greater than the
value of SRSCtlHSS.

PSS 9:6 Previous Shadow Set. If GPR shadow registers are
implemented, and with the exclusions noted in the next
paragraph, this field is copied from the CSS field when
an exception or interrupt occurs. An ERET instruction
copies this value back into the CSS field if StatusBEV =
0.
This field is not updated on any exception which sets
StatusERL to 1 (Reset, Soft Reset, NMI, SRAM Inter-
face Parity or ECC error), an entry into Debug mode, or
any exception or interrupt that occurs with StatusEXL =
1, or StatusBEV = 1. This field is not updated on an
exception that occurs while StatusERL = 1.
The operation of the processor is UNDEFINED if soft-
ware writes a value into this field that is greater than the
value in the HSS field.

R/W 0

0 5:4 Must be written as zeros; returns zero on read. 0 0

CSS 3:0 Current Shadow Set. If GPR shadow registers are imple-
mented, this field is the number of the current GPR set.
With the exclusions noted in the next paragraph, this
field is updated with a new value on any interrupt or
exception, and restored from the PSS field on an ERET.
Table 5.13 describes the various sources from which the
CSS field is updated on an exception or interrupt.
This field is not updated on any exception which sets
StatusERL to 1 (Reset, Soft Reset, NMI, SRAM Inter-
face Parity or ECC error), an entry into Debug mode, or
any exception or interrupt that occurs with StatusEXL =
1, or StatusBEV = 1. Neither is it updated on an ERET
with StatusERL = 1 or StatusBEV = 1. This field is not
updated on an exception that occurs while StatusERL =
1.
The value of CSS can be changed directly by software
only by writing the PSS field and executing an ERET
instruction.

R 0

Table 5.12 SRSCtl Register Field Descriptions (Continued)

Fields

Description Read/Write
Reset
StateName Bits

5.2 CP0 Register Descriptions

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 103

The SRSMap register contains the shadow register set numbers for vector numbers 7:0. The same shadow set number
can be established for multiple interrupt vectors, creating a many-to-one mapping from a vector to a single shadow
register set number.

Figure 5.11 shows the format of the SRSMap register; Table 5.14 describes the SRSMap register fields.

5.2.12 View_IPL Register (CP0 Register 12, Select 4)

Table 5.13 Sources for RSCtlCSS on an Exception or Interrupt

Exception Type Condition SRSCtlCSS Source Comment

Exception All SRSCtlESS

Non-Vectored Inter-
rupt

CauseIV = 0 SRSCtlESS Treat as exception

Vectored Interrupt CauseIV = 1 and
Config3VEIC = 0 and

Config3VInt = 1

SRSMapVECTNUM Source is internal map register.
(for VECTNUM see Table 4.3)

Vectored EIC Inter-
rupt

CauseIV = 1 and
Config3VEIC = 1

SRSCtlEICSS Source is external interrupt con-
troller.

Figure 5.11 SRSMap Register Format

31 28 27 24 23 20 19 16 15 12 11 8 7 4 3 0

SSV7 SSV6 SSV5 SSV4 SSV3 SSV2 SSV1 SSV0

Table 5.14 SRSMap Register Field Descriptions

Fields

Description Read/Write Reset StateName Bits

SSV7 31:28 Shadow register set number for Vector Number 7 R/W 0

SSV6 27:24 Shadow register set number for Vector Number 6 R/W 0

SSV5 23:20 Shadow register set number for Vector Number 5 R/W 0

SSV4 19:16 Shadow register set number for Vector Number 4 R/W 0

SSV3 15:12 Shadow register set number for Vector Number 3 R/W 0

SSV2 11:8 Shadow register set number for Vector Number 2 R/W 0

SSV1 7:4 Shadow register set number for Vector Number 1 R/W 0

SSV0 3:0 Shadow register set number for Vector Number 0 R/W 0

Figure 5.12 View_IPL Register Format

31 10 9 0

0 IM

IPL

 CP0 Registers of the M6200 Core

104 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

This register gives read and write access to the IM or IPL field that is also available in the Status Register. The use of
this register allows the Interrupt Mask or the Priority Level to be read/written without extracting/inserting that bit
field from/to the Status Register.

The IPL field might be located in non-contiguous bits within the Status Register. All of the IPL bits are presented as a
contiguous field within this register.

5.2.13 SRSMap2 Register (CP0 Register 12, Select 5)

The SRSMap2 register contains 2 4-bit fields that provide the mapping from an vector number to the shadow set
number to use when servicing such an interrupt. The values from this register are not used for a non-interrupt excep-
tion, or a non-vectored interrupt (CauseIV = 0 or IntCtlVS = 0). In such cases, the shadow set number comes from
SRSCtlESS.

If SRSCtlHSS is zero, the results of a software read or write of this register are UNPREDICTABLE.

The operation of the processor is UNDEFINED if a value is written to any field in this register that is greater than the
value of SRSCtlHSS.

The SRSMap2 register contains the shadow register set numbers for vector numbers 9:8. The same shadow set num-
ber can be established for multiple interrupt vectors, creating a many-to-one mapping from a vector to a single
shadow register set number.

Figure 5.13 shows the format of the SRSMap2 register; Table 5.16 describes the SRSMap2 register fields.

Table 5.15 View_IPL Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

IM 9:0 Interrupt Mask.
If EIC interrupt mode is not enabled, controls which inter-
rupts are enabled.

R/W Undefined for
IM7:IM2

0 for IM9:IM8

IPL 9:2 Interrupt Priority Level.
If EIC interrupt mode is enabled, this field is the encoded
value of the current IPL.

R/W Undefined

0 31:10, 1:0 Must be written as zero; returns zero on read. 0 0

Figure 5.13 SRSMap Register Format

31 8 7 4 3 0

0 SSV9 SSV8

5.2 CP0 Register Descriptions

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 105

5.2.14 Cause Register (CP0 Register 13, Select 0)

The Cause register primarily describes the cause of the most recent exception. In addition, fields also control soft-
ware interrupt requests and the vector through which interrupts are dispatched. With the exception of the IP1..0, DC,
IV, and WP fields, all fields in the Cause register are read-only. In the optional External Interrupt Controller (EIC)
interrupt mode, in which IP7..2 are interpreted as the Requested Interrupt Priority Level (RIPL).

Figure 5.14 shows the format of the Cause register; Table 5.17 describes the Cause register fields.

Table 5.16 SRSMap Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

0 31:8 Must be written as zero; returns zero on read. R 0

SSV9 7:4 Shadow register set number for Vector Number 9 R/W 0

SSV8 3:0 Shadow register set number for Vector Number 8 R/W 0

Figure 5.14 Cause Register Format

31 30 29 28 27 26 25 24 23 22 21 20 18 17 10 9 8 7 6 2 1 0

BD TI CE DC PCI IC AP IV 0 FDCI 0 IP9..IP2 IP1..IP0 0 Exc Code 0

RIPL

Table 5.17 Cause Register Field Descriptions

Fields

Description Read/Write Reset StateName Bits

BD 31 Indicates whether the last exception taken occurred in a
branch delay slot or forbidden slot:

The processor updates BD only if StatusEXL was zero
when the exception occurred.
If the exception occurred in a branch delay slot or for-
bidden slot, the exception program counter (EPC) is set
to restart execution at the branch.

R Undefined

Encoding Meaning

0 Not in delay slot
1 In delay slot

 CP0 Registers of the M6200 Core

106 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

TI 30 Timer Interrupt. This bit denotes whether a timer inter-
rupt is pending (analogous to the IP bits for other inter-
rupt types):

The state of the TI bit is available on the external core
interface as the SI_TimerInt signal

R Undefined

CE 29:28 Coprocessor unit number referenced when a Coproces-
sor Unusable exception is taken. This field is loaded by
hardware on every exception, but is UNPREDICT-
ABLE for all exceptions except for Coprocessor Unus-
able.

R Undefined

DC 27 Disable Count register. In some power-sensitive applica-
tions, the Count register is not used and is the source of
meaningful power dissipation. This bit allows the Count
register to be stopped in such situations.

R/W 0

PCI 26 Performance Counter Interrupt. This bit denotes whether
a performance counter interrupt is pending (analogous
to the IP bits for other interrupt types):

The state of the PCI bit is available on the external
M6200 interface as the SI_PCInt signal.

R 0

IC 25 Indicates if Interrupt Chaining occurred on the last IRET
instruction.

R Undefined

Table 5.17 Cause Register Field Descriptions (Continued)

Fields

Description Read/Write Reset StateName Bits

Encoding Meaning

0 No timer interrupt is pending
1 Timer interrupt is pending

Encoding Meaning

0 Enable counting of Count register
1 Disable counting of Count register

Encoding Meaning

0 No timer interrupt is pending
1 Timer interrupt is pending

Encoding Meaning

0 Interrupt Chaining did not happen on
last IRET

1 Interrupt Chaining occurred during
last IRET

5.2 CP0 Register Descriptions

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 107

AP 24 Indicates whether an exception occurred during Inter-
rupt Auto-Prologue.

R Undefined

IV 23 Indicates whether an interrupt exception uses the gen-
eral exception vector or a special interrupt vector:

If the CauseIV is 1 and StatusBEV is 0, the special
interrupt vector represents the base of the vectored inter-
rupt table.

R/W Undefined

0 22 Must be written as zero; returns zero on read. 0 0

FDCI 21 Fast Debug Channel Interrupt. This bit denotes whether
a FDC Interrupt is pending (analogous to the IP bits for
other interrupt types):

R 0

Table 5.17 Cause Register Field Descriptions (Continued)

Fields

Description Read/Write Reset StateName Bits

Encoding Meaning

0 Exception did not occur during
Auto-Prologue operation.

1 Exception occurred during Auto-Pro-
logue operation.

Encoding Meaning

0 Use the general exception vector
(16#180)

1 Use the special interrupt vector
(16#200)

Encoding Meaning

0 No Fast Debug Channel interrupt is
pending

1 Fast Debug Channel interrupt is pend-
ing

 CP0 Registers of the M6200 Core

108 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

IP9:IP2 17:10 Indicates an interrupt is pending:

In implementations of Release 1 of the Architecture,
timer and performance counter interrupts are combined
in an implementation-dependent way with hardware
interrupt 5.
In implementations in which EIC interrupt mode is not
enabled (Config3VEIC = 0), timer and performance
counter interrupts are combined in an implementa-
tion-dependent way with any hardware interrupt. If EIC
interrupt mode is enabled (Config3VEIC = 1), these bits
have a different meaning, and are interpreted as the
RIPL field, described below.

R Undefined
for IP7:IP2

0 for IP9:IP8

RIPL 17:10 Requested Interrupt Priority Level.
In implementations in which EIC interrupt mode is
enabled (Config3VEIC = 1), this field is the encoded
(0..255) value of the requested interrupt. A value of zero
indicates that no interrupt is requested.
If EIC interrupt mode is not enabled (Config3VEIC = 0),
these bits have a different meaning and are interpreted as
the IP7..IP2 bits, described above.

R Undefined for
bits 15:10

0 for bits 17:16

IP1:IP0 9:8 Controls the request for software interrupts:

These bits are exported to an external interrupt control-
ler for prioritization in EIC interrupt mode with other
interrupt sources. The state of these bits is available on
the external core interface as the SI_SWInt[1:0] bus.

R/W Undefined

ExcCode 6:2 Exception code - see Table 5.18 R Undefined

0 20:18, 7,
1:0

Must be written as zero; returns zero on read. 0 0

Table 5.17 Cause Register Field Descriptions (Continued)

Fields

Description Read/Write Reset StateName Bits

Bit Name Meaning

17 IP9 Hardware Interrupt 7

16 IP8 Hardware Interrupt 6

15 IP7 Hardware interrupt 5

14 IP6 Hardware interrupt 4

13 IP5 Hardware interrupt 3

12 IP4 Hardware interrupt 2

11 IP3 Hardware interrupt 1

10 IP2 Hardware interrupt 0

Bit Name Meaning

9 IP1 Request software interrupt 1
8 IP0 Request software interrupt 0

5.2 CP0 Register Descriptions

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 109

5.2.15 View_RIPL Register (CP0 Register 13, Select 4)

This register gives read access to the IP or RIPL field that is also available in the Cause Register. The use of this reg-
ister allows the Interrupt Pending or the Requested Priority Level to be read without extracting that bit field from the
Cause Register.

Table 5.18 Cause Register ExcCode Field

Exception Code Value

Mnemonic DescriptionDecimal Hexadecimal

0 16#00 Int Interrupt

1-3 16#01-16#03 - Reserved

4 16#04 AdEL Address error exception (load or instruction fetch)

5 16#05 AdES Address error exception (store)

6 16#06 IBE Bus error exception (instruction fetch)

7 16#07 DBE Bus error exception (data reference: load or store)

8 16#08 Sys Syscall exception

9 16#09 Bp Breakpoint exception

10 16#0a RI Reserved instruction exception

11 16#0b CpU Coprocessor Unusable exception

12 16#0c Ov Arithmetic Overflow exception

13 16#0d Tr Trap exception

16 16#10 IS1 Implementation-Specific Exception 1 (COP2)

17 16#11 CEU CorExtend Unusable

18 16#12 C2E Coprocessor 2 exceptions

19-25 16#13-16#19 - Reserved

26 16#1a DSPDis DSP Module State Disabled exception

27-28 16#1b-16#1c - Reserved

29 16#1d MPU MPU Exception

30 16#1e SRAM Inter-
face Parity or

ECC error

SRAM Interface Parity or ECC error. In normal mode, an SRAM
error exception has a dedicated vector and the Cause register is not
updated. If an SRAM error occurs in Debug Mode, this code is writ-
ten to the DebugDExcCode field to indicate that re-entry to Debug
Mode was caused by an SRAM error.

31 16#1f - Reserved

Figure 5.15 View_RIPL Register Format

31 10 9 2 1 0

0 IP9..IP2 IP1 IP0

RIPL

 CP0 Registers of the M6200 Core

110 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

5.2.16 NestedExc (CP0 Register 13, Select 5)

The Nested Exception (NestedExc) register is an optional read-only register containing the values of StatusEXL and
StatusERL prior to acceptance of the current exception.

This register is part of the Nested Fault feature. The existence of the register can be determined by reading the
Config5NFExists bit.

Figure 5.16 shows the format of the NestedExc register; Table 5.20 describes the NestedExc register fields.

Table 5.19 View_RIPL Register Field Descriptions

Fields

Description Read / Write Reset StateName Bits

0 31:10 Must be written as zero; returns zero on read. 0 0

IP9:IP2 9:2 HW Interrupt Pending.
If EIC interrupt mode is not enabled, indicates which HW
interrupts are pending.

R Undefined for
IP7:IP2

0 for IP9:IP8

RIPL 9:2 Interrupt Priority Level.
If EIC interrupt mode is enabled, this field indicates the
Requested Priority Level of the pending interrupt.

R Undefined

IP1:IP0 1:0 SW Interrupt Pending.
If EIC interrupt mode is not enabled, controls which SW
interrupts are pending.

R/W Undefined

Figure 5.16 NestedExc Register Format

31 3 2 1 0

0 ERL EXL 0

Table 5.20 NestedExc Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

0 31:3 Reserved, read as 0. R0 0

ERL 2 Value of StatusERL prior to acceptance of current excep-
tion.

Updated by all exceptions that would set either
StatusEXL or StatusERL. Not updated by Debug excep-
tions.

R Undefined

5.2 CP0 Register Descriptions

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 111

5.2.17 Exception Program Counter (CP0 Register 14, Select 0)

The Exception Program Counter (EPC) is a read/write register that contains the address at which processing resumes
after an exception has been serviced. All bits of the EPC register are significant and must be writable.

For synchronous (precise) exceptions, the EPC contains one of the following:

• The virtual address of the instruction that was the direct cause of the exception

• The virtual address of the immediately preceding branch or jump instruction, when the exception-causing
instruction is in a branch delay slot or forbidden slot, and the Branch Delay bit in the Cause register is set.

On new exceptions, the processor does not write to the EPC register when the EXL bit in the Status register is set;
however, the register can still be written via the MTC0 instruction.

A read of the EPC register (via MFC0) returns the following value in the destination GPR:

GPR[rt]  ExceptionPC31..1 || ISAMode0

That is, the upper 31 bits of the exception PC are combined with the lower bit of the ISAMode field and written to the
GPR.

Similarly, a write to the EPC register (via MTC0) takes the value from the GPR and distributes that value to the
exception PC and the ISAMode field, as follows:

ExceptionPC  GPR[rt]31..1 || 0
ISAMode  2#0 || GPR[rt]0

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the exception PC, and the lower bit of the
exception PC is cleared. The upper bit of the ISAMode field is cleared, and the lower bit is loaded from the lower bit
of the GPR.

EXL 1 Value of StatusEXL prior to acceptance of current excep-
tion.

Updated by exceptions which would update EPC if
StatusEXL is not set (Interrupt, Address Error, all TLB
exceptions, Bus Error, CopUnusable, Reserved Instruc-
tion, Overflow, Trap, Syscall, etc.). For these exception
types, this register field is updated regardless of the
value of StatusEXL.

Not updated by exception types which update ErrorEPC
(Reset, Soft Reset, NMI, SRAM Interface Parity or ECC
error). Not updated by Debug exceptions.

R Undefined

0 0 Reserved, read as 0. R0 0

Table 5.20 NestedExc Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

 CP0 Registers of the M6200 Core

112 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

Figure 5.17 EPC Register Format

5.2.18 NestedEPC (CP0 Register 14, Select 2)

The Nested Exception Program Counter (NestedEPC) is an optional read/write register with the same behavior as the
EPC register, except that:

• The NestedEPC register ignores the value of StatusEXL and is therefore updated on the occurrence of any excep-
tion, including nested exceptions.

• The NestedEPC register is not used by the ERET/DERET/IRET instructions. To return to the address stored in
NestedEPC, software must copy the value of the NestedEPC register to the EPC register.

This register is part of the Nested Fault feature. The existence of the register can be determined by reading the
Config5NFExists bit.

Figure 5.16 shows the format of the NestedEPC register; Table 5.20 describes the NestedEPC register fields.

31 0

EPC

Table 5.21 EPC Register Field Description

Fields

Description Read/Write Reset StateName Bit(s)

EPC 31:0 Exception Program Counter. R/W Undefined

Figure 5.18 NestedEPC Register Format

31 0

NestedEPC

5.2 CP0 Register Descriptions

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 113

5.2.19 Processor Identification (CP0 Register 15, Select 0)

The Processor Identification (PRId) register is a 32-bit, read-only register that contains information identifying the
manufacturer, manufacturer options, processor identification, and revision level of the processor.

Table 5.22 NestedEPC Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

NestedEPC 31:0 Nested Exception Program Counter.

Updated by exceptions which would update EPC if
StatusEXL is not set (Interrupt, Address Error, all TLB
exceptions, Bus Error, CopUnusable, Reserved Instruc-
tion, Overflow, Trap, Syscall, etc.). For these exception
types, this register field is updated regardless of the
value of StatusEXL.

Not updated by exception types which update ErrorEPC
(Reset, Soft Reset, NMI, and SRAM Interface Parity or
ECC error).
Not updated by Debug exceptions.

R/W Undefined

 CP0 Registers of the M6200 Core

114 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

Figure 5.19 PRId Register Format

5.2.20 EBase Register (CP0 Register 15, Select 1)

The EBase register is a read/write register containing the base address of the exception vectors used when StatusBEV
equals 0, and a read-only CPU number value that may be used by software to distinguish different processors in a
multiprocessor system.

31 24 23 16 15 8 7 5 4 2 1 0

Company Opt Company ID Processor ID Revision

Table 5.23 PRId Register Field Descriptions

Fields

Description Read/Write Reset StateName Bit(s)

Company Opt 31:24 Company Option. Whatever name is specified by the SoC
builder who synthesizes the M6200 core; refer to your
SoC manual. This field should be preset by the configura-
tion GUI with a number between 0x00 and 0x7F; higher
values (0x80-0xFF) are reserved by MIPS Technologies.

R 0

Company ID 23:16 Company Identifier. Identifies the company that designed
or manufactured the processor. In the M6200 this field
contains a value of 1 to indicate MIPS.
.

R 1

Processor ID 15:8 Processor Identifier. Identifies the type of processor. This
field allows software to distinguish between the various
types of MIPS processors.

R 0xaa

Revision 7:0 Processor Revision. Specifies the revision number of the
processor. This field allows software to distinguish
between different revisions of the same processor type.
This field contains the following three subfields:

R 0x20
(0b001_000_00)

Bits Name Meaning
Read/
Write Reset

7:5 Major
Revision

This number is
increased on major
revisions of the pro-
cessor core.

R Preset

4:2 Minor
Revision

This number is
increased on each
incremental revi-
sion of the proces-
sor and reset on
each new major
revision.

R Preset

1:0 Patch
Level

If a patch is made to
modify an older
revision of the pro-
cessor, this field is
incremented.

R Preset

5.2 CP0 Register Descriptions

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 115

The EBase register provides the ability for software to identify the specific processor within a multiprocessor system,
and allows the exception vectors for each processor to be different, especially in systems composed of heterogeneous
processors. Bits 31:12 of the EBase register are concatenated with zeros to form the base of the exception vectors
when StatusBEV is 0. The exception vector base address comes from the fixed defaults (see Section 4.5 “Exception
Vector Locations”) when StatusBEV is 1, or for any Debug exception. The reset state of bits 31:12 of the EBase register
initialize the exception base register to 16#8000.0000, providing backward compatibility with Release 1 imple-
mentations.

Bits 31:30 of the EBase Register are fixed with the value 2#10 to force the exception base address to be in the kseg0
or kseg1 unmapped virtual address segments.

If the value of the exception base register is to be changed, this must be done with StatusBEV equal 1. The operation of
the processor is UNDEFINED if the Exception Base field is written with a different value when StatusBEV is 0.

Combining bits 31:12 with the Exception Base field allows the base address of the exception vectors to be placed at
any 4KByte page boundary. If vectored interrupts are used, a vector offset greater than 4KBytes can be generated. In
this case, bit 12 of the Exception Base field must be zero. The operation of the processor is UNDEFINED if software
writes bit 12 of the Exception Base field with a 1 and enables the use of a vectored interrupt whose offset is greater
than 4KBytes from the exception base address.

Figure 5.20 shows the format of the EBase Register; Table 5.24 describes the EBase register fields.

5.2.21 CDMMBase Register (CP0 Register 15, Select 2)

The 36-bit physical base address for the Common Device Memory Map facility is defined by this register. This regis-
ter only exists if Config3CDMM is set to one.

Figure 5.20 EBase Register Format

31 30 29 12 11 10 9 0

1 0 Exception Base 0 0 CPUNum

Table 5.24 EBase Register Field Descriptions

Fields

Description Read/Write Reset StateName Bits

1 31 This bit is ignored on writes and returns one on reads. R 1

0 30 This bit is ignored on writes and returns zero on reads. R 0

Exception
Base

29:12 In conjunction with bits 31:30, this field specifies the base
address of the exception vectors when StatusBEV is zero.

R/W 0

0 11:10 Must be written as zero; returns zero on reads. 0 0

CPUNum 9:0 This field specifies the number of the CPU in a multipro-
cessor system and can be used by software to distinguish a
particular processor from the others. The value in this field
is set by the SI_CPUNum[9:0] static input pins to the
core. In a single processor system, this value should be set
to zero.

R Externally Set

 CP0 Registers of the M6200 Core

116 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

Figure 5.21 shows the format of the CDMMBase register, and Table 5.25 describes the register fields.

5.2.22 Config Register (CP0 Register 16, Select 0)

The Config register specifies various configuration and capabilities information. Most of the fields in the Config reg-
ister are initialized by hardware during the Reset exception process, or are constant.Figure 5.22 shows the format of
the Config Register format, and Table 5.26 describes the register fields.

Figure 5.21 CDMMBase Register Format

31 11 10 9 8 0

CDMM_UPPER_ADDR EN CI CDMMSize

Table 5.25 CDMMBase Register Field Descriptions

Fields

Description Read/Write Reset StateName Bits

CDMM_UP
PER_ADDR

31:11 Bits 35:15 of the base physical address of the mem-
ory mapped registers.
The number of implemented physical address bits is
implementation-specific. For the unimplemented
address bits, writes are ignored and reads return zero.

R/W Undefined

EN 10 Enables the CDMM region.
If this bit is cleared, memory requests to this address
region access regular system memory. If this bit is
set, memory requests to this region access the
CDMM logic

R/W 0

CI 9 If set to 1, this indicates that the first 64-byte Device
Register Block of the CDMM is reserved for addi-
tional registers that manage CDMM region behavior
and are not IO device registers.

R 0

CDMMSize 8:0 This field represents the number of 64-byte Device
Register Blocks instantiated in the core.

R Preset

Encoding Meaning

0 CDMM Region is disabled.
1 CDMM Region is enabled.

Encoding Meaning

0 1 DRB
1 2 DRBs
2 3 DRBs
... ...

511 512 DRBs

5.2 CP0 Register Descriptions

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 117

Figure 5.22 Config Register Format
31 30 28 27 25 24 23 22 21 20 19 16 15 14 13 12 10 9 7 6 4 3 2 0

M K23 KU 0 UDI 0 MDU 0 BE AT AR MT 0 K0

Table 5.26 Config Register Field Descriptions

Fields

Description Read/Write Reset StateName Bit(s)

M 31 This bit is hardwired to ‘1’ to indicate the presence of the
Config1 register.

R 1

K23 30:28 This field controls the cacheability of the kseg2 and kseg3
address segments in FM implementations.
Refer to Table 5.27 for the field encoding.

FM: R/W FM: 010

KU 27:25 This field controls the cacheability of the kuseg and useg
address segments in FM implementations.
Refer to Table 5.27 for the field encoding.

FM: R/W FM: 010

0 24:23 Must be written as 0. Returns zero on reads. 0 0

UDI 22 This bit indicates if CorExtend User Defined Instructions
have been implemented.
This bit is hardwired to 0 to indicate that user-defined
instructions are not implemented.

R 0

0 21 Must be written as 0. Returns zero on reads. 0 0

MDU 20 This bit indicates the type of Multiply/Divide Unit present.
This bit is preset to 0 to indicate high-performance MDU.

R 0

0 19:16 Must be written as 0. Returns zero on reads. 0 0

BE 15 Indicates the endian mode in which the processor is run-
ning. Set via SI_Endian input pin.
0: Little endian
1: Big endian

R 0

AT 14:13 Architecture type implemented by the processor. This field
is always 00 to indicate the MIPS32 architecture.

R 00

AR 12:10 Architecture revision level. This field is always 010 to indi-
cate MIPS32 Release 6.

R 010

MT 9:7 MMU Type:
3: Fixed Mapping
0-2, 4-7: Reserved

R 3

0 6:4 Must be written as zeros; returns zeros on reads. 0 0

K0 2:0 Kseg0 coherency algorithm. Refer to Table 5.27 for the
field encoding.

R/W 010

Encoding Meaning

0 Release 1
1 Release 2
2 Release 6

3-7 Reserved

 CP0 Registers of the M6200 Core

118 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

5.2.23 Config1 Register (CP0 Register 16, Select 1)

The Config1 register is an adjunct to the Config register and encodes additional information about capabilities present
on the core. All fields in the Config1 register are read-only.

Table 5.27 Cache Coherency Attributes

C(2:0) Value Cache Coherency Attribute

2 Uncached.

3 Cached Core does not support caches, but passes this attribute to the system for use with
any external caching mechanisms.
In addition, when fetching from cacheable space, the core will attempt to improve perfor-
mance by anticipating where the next instruction is located and pre-fetch/specula-
tively-fetch the next instruction. In contrast, fetching from uncacheable space will cause the
core to stall until the current outstanding instruction is completed and graduated from the
pipeline.
Similarly, when reading or writing to cacheable space, the core will attempt to optimize the
performance by using its internal buffers. This may cause data/address-independent cache-
able accesses to appear out-of-order. Performing the SYNC instruction or accessing unca-
cheable space will prevent this behavior but potentially reduce performance.

All other values Cause the CCA value to be set to 3.

5.2 CP0 Register Descriptions

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 119

Figure 5.23 Config1 Register Format — Select 1

31 30 25 24 22 21 19 18 16 15 13 12 10 9 7 6 5 4 3 2 1 0

M MMU Size IS IL IA DS DL DA C2 MD PC WR CA EP FP

Table 5.28 Config1 Register Field Descriptions — Select 1

Fields

Description Read/Write Reset StateName Bit(s)

M 31 This bit is hardwired to ‘1’ to indicate the presence of the
Config2 register.

R 1

MMU Size 30:25 This field contains the number of entries in the TLB minus
one.

R 0

IS 24:22 This field contains the number of instruction cache sets per
way. Because the M6200 core does not include caches, this
field is always read as 0.

R 0

IL 21:19 This field contains the instruction cache line size. Because
the M6200 core does not include caches, this field is always
read as 0.

R 0

IA 18:16 This field contains the level of instruction cache associativ-
ity. Because the M6200 core does not include caches, this
field is always read as 0.

R 0

DS 15:13 This field contains the number of data cache sets per way.
Because the M6200 core does not include caches, this field
is always read as 0.

R 0

DL 12:10 This field contains the data cache line size. Because the
M6200 core does not include caches, this field is always
read as 0.

R 0

DA 9:7 This field contains the type of set associativity for the data
cache. Because the M6200 core does not include caches,
this field is always read as 0.

R 0

C2 6 Coprocessor 2 present.
0: No coprocessor is attached to the COP2 interface
1: A coprocessor is attached to the COP2 interface
If the Cop2 interface logic is not implemented, this bit will
read 0.

R Preset

MD 5 MDMX implemented. This bit always reads as 0 because
MDMX is not supported.

R 0

PC 4 Performance Counter registers implemented.
0: No Performance Counter registers are implemented
1: Performance Counter registers are implemented

R Preset

WR 3 Watch Registers implemented.
This bit is always read as 0, because the M6200 core does
not contain Watch registers.

R 0

CA 2 Code compression (MIPS16e) implemented.
0: MIPS16e is not implemented
1: MIPS16e is implemented
Because the M6200 does not support the MIPS16e ASE,
this bit is always read as 0.

R 0

 CP0 Registers of the M6200 Core

120 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

5.2.24 Config2 Register (CP0 Register 16, Select 2)

The Config2 register is an adjunct to the Config register and is reserved to encode additional capabilities information.
Config2 is allocated for showing the configuration of level 2/3 caches. These fields are reset to 0 because L2/L3
caches are not supported by the M6200 core. All fields in the Config2 register are read-only.

Figure 5.24 Config2 Register Format — Select 2

5.2.25 Config3 Register (CP0 Register 16, Select 3)

The Config3 register encodes additional capabilities. All fields in the Config3 register are read-only.

Figure 5.25 shows the format of the Config3 register; Table 5.30 describes the Config3 register fields.

EP 1 Debug interface present: This bit is always set to indicate
that the core implements the Debug interface.

R 1

FP 0 FPU implemented.
0: No FPU
1: FPU is implemented
This bit always reads as 0 because an FPU is not supported.

R 0

31 30 0

M 0

Table 5.29 Config2 Register Field Descriptions — Select 1

Fields

Description Read/Write Reset StateName Bit(s)

M 31 This bit is hardwired to ‘1’ to indicate the presence of the
Config3 register.

R 1

0 30:0 These bits are reserved. R 0

Figure 5.25 Config3 Register Format

31 30 28 27 26 25 23 22 21 20 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M 0 BP BI 0 IPLW MMAR MCU
ISA
On
Exc

ISA ULRI RXI

D
S
P
2
P

D
S
P
P

0 ITL LPA

V
E
I
C

V
I
n
t

SP
CD
M
M

0 SM TL

Table 5.28 Config1 Register Field Descriptions — Select 1 (Continued)

Fields

Description Read/Write Reset StateName Bit(s)

5.2 CP0 Register Descriptions

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 121

Table 5.30 Config3 Register Field Descriptions

Fields

Description Read/Write Reset StateName Bits

M 31 This bit is reserved to indicate that a Config4 register is present. R 1

0 30:28,
25:23,9,2

Must be written as zeros; returns zeros on read. 0 0

BP 27 BadInstrP register implemented. This bit indicates whether the
faulting prior branch instruction word register is present.

R 1

BI 26 BadInstr register implemented. This bit indicates
whether the faulting instruction word register is present.

R 1

IPLW 22:21 Width of the StatusIPL and CauseRIPL fields:

If the IPL field is 8-bits in width, bits 18 and 16 of Status are
used as the most significant bit and second most significant bit,
respectively, of that field.

If the RIPL field is 8-bits in width, bits 17 and 16 of Cause are
used as the most significant bit and second most significant bit,
respectively, of that field.

R 1

Encoding Meaning

0 Config4 is not implemented.

1 Config4 is implemented.

Encoding Meaning

0 BadInstrP is not implemented.

1 BadInstrP is implemented.

Encoding Meaning

0 BadInstr is not implemented.

1 BadInstr is implemented.

Encoding Meaning

0 IPL and RIPL fields are 6-bits in
width.

1 IPL and RIPL fields are 8-bits in
width.

Others Reserved.

 CP0 Registers of the M6200 Core

122 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

MMAR 20:18 microMIPS Architecture revision level. This field is always 010
to indicate microMIPS32 Release 6.

R 010

MCU 17 MIPS MCU ASE Implemented. R 1

ISAOnExc 16 Reflects the Instruction Set Architecture used when vectoring to
an exception. Affects exceptions whose vectors are offsets from
EBase.

Note that the M6200 supports booting only in MIPS32 mode.

R 0

ISA 15:14 Indicates Instruction Set Availability. R 2

Table 5.30 Config3 Register Field Descriptions (Continued)

Fields

Description Read/Write Reset StateName Bits

Encoding Meaning

0 Release 1
1 Release 2
2 Release 6

3-7 Reserved

Encoding Meaning

0 MCU ASE is not implemented.

1 MCU ASE is implemented.

Encoding Meaning

0 MIPS32 ISA is used on entrance to an
exception vector.

1 microMIPS is used on entrance to an
exception vector.

Encoding Meaning

0 Reserved

1 Reserved

2 Both MIPS32 and microMIPS are
implemented. MIPS32 ISA used when
coming out of reset.

3 Both MIPS32 and microMIPS are
implemented. microMIPS is used
when coming out of reset.

5.2 CP0 Register Descriptions

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 123

ULRI 13 UserLocal register implemented. This bit indicates whether the
UserLocal coprocessor 0 register is implemented.

R 1

RXI 12 Indicates whether the RIE and XIE bits exist within the
PageGrain register..

R 0

DSP2P 11 Reads 1 to indicate that Revision 2 or higher of the MIPS DSP
Module is implemented

R Preset

DSPP 10 Reads 1 to indicate that the MIPS DSP Module extension is
implemented.

R Preset

ITL 8 Indicates that iFlowtrace hardware is present. R Preset

LPA 7 Denotes the presence of support for large physical addresses on
MIPS64 processors. Not used by MIPS32 processors and returns
zero on read.

For implementations of Release 1 of the Architecture, this bit
returns zero on read.

R Preset

VEIC 6 Indicates support for an external interrupt controller.

The value of this bit is set by the static input, SI_EICPresent.
This allows external logic to communicate whether an external
interrupt controller is attached to the processor or not.

R Externally Set

Table 5.30 Config3 Register Field Descriptions (Continued)

Fields

Description Read/Write Reset StateName Bits

Encoding Meaning

0 UserLocal register is not imple-
mented

1 UserLocal register is implemented

Encoding Meaning

0 The RIE and XIE bits are not imple-
mented within the PageGrain register.

1 The RIE and XIE bits are implemented
within the PageGrain register

Encoding Meaning

0 Large physical address support is not
implemented

1 Large physical address support is
implemented

Encoding Meaning

0 Support for EIC interrupt mode is not
implemented

1 Support for EIC interrupt mode is
implemented

 CP0 Registers of the M6200 Core

124 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

5.2.26 Config4 Register (CP0 Register 16, Select 4)

The Config4 register encodes additional capabilities. This register is required if any optional feature described by this
register is implemented and is otherwise optional.

Figure 5.26 shows the format of the Config4 register; Table 5.31 describes the Config4 register fields.

VInt 5 Indicates implementation of Vectored interrupts.

On the M6200 core, this bit is always a 1, because vectored inter-
rupts are implemented.

R 1

SP 4 When set, indicates that Small (1KByte) page support is imple-
mented. This bit is hardwired to ‘0’ to indicate that small page
size is not supported.

R 0

CDMM 3 Common Device Memory Map implemented. This bit indicates
whether the CDMM is implemented.

R Preset

SM 1 SmartMIPS™ ASE implemented. This bit indicates whether the
SmartMIPS ASE is implemented. Because SmartMIPS is not
present on the M6200 core, this bit will always be 0.

R 0

TL 0 Trace Logic implemented. This bit indicates whether PC or data
trace is implemented.

R 0

Figure 5.26 Config4 Register Format

31 30 29 24 23 16 15 0

M 0 KScr Exist 0

Table 5.30 Config3 Register Field Descriptions (Continued)

Fields

Description Read/Write Reset StateName Bits

Encoding Meaning

0 Vector interrupts are not implemented
1 Vectored interrupts are implemented

Encoding Meaning

0 CDMM is not implemented

1 CDMM is implemented

Encoding Meaning

0 SmartMIPS ASE is not implemented
1 SmartMIPS ASE is implemented

Encoding Meaning

0 Trace logic is not implemented
1 Trace logic is implemented

5.2 CP0 Register Descriptions

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 125

5.2.27 Config5 Register (CP0 Register 16, Select 5)

The Config5 register encodes additional capabilities. This register is required if any optional feature described by this
register is implemented and is otherwise optional.

Figure 5.27 shows the format of the Config5 register; Table 5.32 describes the Config5 register fields.

Table 5.31 Config4 Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

M 31 This bit is reserved to indicate that a Config5 register is
present.

R 1

0 30:24 Reserved R 0

KScrExist 23:16 Indicates how many scratch registers are available to
kernel-mode software in CP0 Register 31. Each bit rep-
resents a select for Coproecessor0 Register 31.
Bit 16 represents Select 0, Bit 23 represents Select 7.
If the bit is set, the associated scratch register is imple-
mented and available for kernel-mode software.
Bits 2-7 are always 1 because KScratch1-6 must be
implemented.
Scratch registers meant for other purposes are not repre-
sented in this field. For example, if the Debug interface
is implemented,
Bit 16 is preset to zero even though DESAVE
register is implemented at Select 0. Select 1 is reserved
for future debug purposes and should not be used as a
kernel scratch register, so bit 17 is preset to zero.

R 8'b1111_1100

0 15:0 Must be written as zeros; returns zeros on read. 0 0

Figure 5.27 Config5 Register Format

31 30 29 28 14 13 12 11 10 9 7 6 5 4 3 2 1 0

M 0 0
X
N
P

0
D
E
C

0 SB
RI

M
V
H

L
L
B

0 0 NF

Table 5.32 Config5 Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

M 31 This bit is reserved and must always read as a 0. R 0

0 30 Must be written as zeros; returns zeros on read. 0 0

 CP0 Registers of the M6200 Core

126 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

0 29:14 Must be written as zeros; returns zeros on read. 0 0

XNP 13 Extended LL/SC family of instructions Not Present.
The LLX/SCX family of instructions is required for
Release 6 Double-Width atomic support. This support is
provided by extending the capability of legacy LL/SC
instructions.

R 0

0 12 Must be written as zeros; returns zeros on read. R0 Preset

DEC 11 Dual Endian Capability. Determines endian capability of
processor.
If both modes are supported, then the processor will ini-
tially boot in little-endian mode always. Thereafter, soft-
ware can force a change in endian mode by setting a bit
in a memory-mapped external register. The endian mode
change will only take effect on subsequent reset. For cur-
rent endian state, software should read ConfigBE.

R 0

0 10:7 Must be written as zeros; returns zeros on read. 0 0

SBRI 6 SDBBP instruction Reserved Instruction control.
The purpose of this field is to restrict availability of
SDBBP to kernel mode operation. It prevents user (and
supervisor) code from entering Debug mode using
SDBBP.

R/W 0

Table 5.32 Config5 Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
StateName Bits

Encoding Meaning

0 LLX/SCX instruction family sup-
ported

1 LLX/SCX instruction family not sup-
ported

Encoding Meaning

0 Only Little-Endian mode supported.
Any implementation must support Lit-
tle-endian mode.

1 Both Little and Big-Endian modes
supported.

Encoding Meaning

0 SDBBP instruction executes as
defined prior to Release 6

1 SDBBP instruction can only be exe-
cuted in kernel mode. User (or super-
visor, if supported) execution of
SDBBP will cause a Reserved Instruc-
tion exception.

5.2 CP0 Register Descriptions

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 127

5.2.28 Config7 Register (CP0 Register 16, Select 7)

The Config7 register contains implementation specific configuration information. A number of these bits are writable
to disable certain performance enhancing features within the M6200 core.

MVH 5 Move To/From High COP0 (MTHC0/MFHC0) instruc-
tions are implemented.
Currently these instructions are only required for
Extended Physical Addressing (XPA).
.

R 1

LLB 4 Load-Linked Bit (LLB) is present in CP0 LLAddr. R 1

0 3:1 Must be written as zeros; returns zeros on read. 0 0

NFExists 0 Indicates that the Nested Fault feature is present.
The Nested Fault feature allows recognition of faulting
behavior within an exception handler.

R 1

Table 5.32 Config5 Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
StateName Bits

Encoding Meaning

0 MTHC0 and MFHC0 are not sup-
ported. COP0 extensions do not exist.

1 MTHC0 and MFHC0 are supported.
Extensions to 32-bit COP0 registers
exist.

 CP0 Registers of the M6200 Core

128 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

Figure 5.28 Config7 Register Format

5.2.29 Load Linked Address (CP0 Register 17, Select 0)

The LLAddr register contains the physical address read by the most recent Load Linked (LL) instruction.

Figure 5.29 LLAddr Register Format

5.2.30 Debug Register (CP0 Register 23, Select 0)

The Debug register is used to control the debug exception and provide information about the cause of the debug
exception and also when re-entering at the debug exception vector due to a normal exception in debug mode. The
read-only information bits are updated every time the debug exception is taken, or when a normal exception is taken
when already in debug mode.

31 19 18 17 9 8 7 0

0 HCI 0 ES

Table 5.33 Config7 Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

0 31:19,17:0 These bits are unused and should be written as 0. R 0

HCI 18 Hardware Cache Initialization: Indicates that a cache does not
require initialization by software. It is the integrator's responsibility
to include a hardware cache initialization module if this bit is config-
ured to 1.

R 0

ES 8 Externalize Sync: When asserted, SYNC instructions are external-
ized and made visible to the bus. For designs that have slave control-
lers unable to handle SYNC behaviors, set this bit to 0.

R/W 0

31 1 0

PAddr LLB

Table 5.34 LLAddr Register Field Descriptions

Fields

Description Read/Write Reset StateName Bit(s)

PAddr[31:1] 31:1 Physical Address. This field encodes the physical address
read by the most recent Load Linked instruction.
LLAddr[1] is aligned to PA[5], which implies that PAddr is
always 32-byte aligned

R Undefined

LLB 0 LL Bit. LLB is set when the LL instruction is executed. The
SC instructions and other hardware events may clear LLB.
This field allows the LL Bit to be accessible by software.
LLB can be cleared by software but cannot be set.

R/W 0

5.2 CP0 Register Descriptions

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 129

Only the DM bit and the Dbgver field are valid when read from non-debug mode; the values of all other bits and fields
are UNPREDICTABLE. Operation of the processor is UNDEFINED if the Debug register is written in non-debug
mode.

Some of the bits and fields are only updated on debug exceptions and/or exceptions in debug mode, as shown below:

• DSS, DBp, DDBL, DDBS, DIB, DINT, DIBImpr, DDBLImpr, DDBSImpr are updated on both debug exceptions and
on exceptions in debug modes.

• DExcCode is updated on exceptions in debug mode, and is undefined after a debug exception.

• Halt and Doze are updated on a debug exception, and are undefined after an exception in debug mode.

• DBD is updated on both debug and on exceptions in debug modes.

All bits and fields are undefined when read from normal mode, except those explicitly described to be defined, e.g.,
Dbgver and DM.

 CP0 Registers of the M6200 Core

130 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

Figure 5.30 Debug Register Format

31 30 29 28 27 26 25 24 23 22 21 20 19

DBD DM NoDCR LSNM Doze Halt CountD
M IBusEP MCheckP CacheEP DBusEP IEXI DDB-

SImpr

18 17 15 14 10 9 8 7 6 5 4 3 2 1 0

DDB-
LImpr DbgVer DExcCode NoSSt SSt R DIBI

mpr DINT DIB DDBS DDBL DBp DSS

Table 5.35 Debug Register Field Descriptions

Fields

Description Read/Write Reset StateName Bit(s)
DBD 31 Indicates whether the last debug exception or exception

in debug mode occurred in a branch delay slot or forbid-
den slot:

R 0

DM 30 Indicates that the processor is operating in debug mode: R/W 0

NoDCR 29 Indicates whether the dseg memory segment is present
and the Debug Control Register is accessible:

R 0

LSNM 28 Controls access of load/store between dseg and main
memory:

R/W 0

Encoding Meaning

0 Not in delay slot

1 In delay slot

Encoding Meaning

0 Processor is operating in non-debug
mode

1 Processor is operating in debug mode

Encoding Meaning

0 dseg is present

1 No dseg present

Encoding Meaning

0 Load/stores in dseg address range
goes to dseg

1 Load/stores in dseg address range
goes to main memory

5.2 CP0 Register Descriptions

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 131

Doze 27 Indicates that the processor was in any kind of low
power mode when a debug exception occurred:

R/W 1

Halt 26 Indicates that the internal system bus clock was stopped
when the debug exception occurred:

R/W1 0

CountDM 25 Indicates the Count register behavior in debug mode: R 0

IBusEP 24 Instruction-fetch Bus Error Exception Pending. Set
when an instruction-fetch bus error event occurs, or if a
1 is written to the bit by software. Cleared when a Bus
Error exception on an instruction fetch is taken by the
processor, and by reset. If IBusEP is set when IEXI is
cleared, a Bus Error exception on an instruction fetch is
taken by the processor, and IBusEP is cleared.

R/W1 0

MCheckP 23 Indicates that an imprecise Machine Check exception is
pending. Machine Check exceptions are not imple-
mented in the M6200 processor, so this bit will always
read as 0.

R 0

CacheEP 22 Indicates that an imprecise SRAM Interface Parity or
ECC error is pending.

R/W1 0

DBusEP 21 Data access Bus Error exception Pending. Covers
imprecise bus errors on data access, similar to the
behavior of IBusEP for imprecise bus errors on an
instruction fetch.

R/W1 0

Table 5.35 Debug Register Field Descriptions (Continued)

Fields

Description Read/Write Reset StateName Bit(s)

Encoding Meaning

0 Processor not in low-power mode
when debug exception occurred

1 Processor in low-power mode when
debug exception occurred

Encoding Meaning

0 Internal system bus clock stopped

1 Internal system bus clock running

Encoding Meaning

0 Count register stopped in debug mode

1 Count register is running in debug
mode

 CP0 Registers of the M6200 Core

132 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

IEXI 20 Imprecise Error eXception Inhibit controls exceptions
taken due to imprecise error indications. Set when the
processor takes a debug exception or exception in debug
mode. Cleared by execution of the DERET instruction;
otherwise modifiable by debug mode software. When
IEXI is set, the imprecise error exception from a bus
error on an instruction fetch or data access, SRAM Inter-
face Parity or ECC error, or machine check is inhibited
and deferred until the bit is cleared.

R/W 0

DDBSImpr 19 Indicates that an imprecise Debug Data Break Store
exception was taken. Imprecise data breaks only occur
on complex breakpoints.

R Undefined

DDBLImpr 18 Indicates that an imprecise Debug Data Break Load
exception was taken. Imprecise data breaks only occur
on complex breakpoints.

R/W Undefined

Dbgver 17:15 Debug interface version. R 0

DExcCode 14:10 Indicates the cause of the latest exception in debug
mode. The field is encoded as the ExcCode field in the
Cause register for those normal exceptions that may
occur in debug mode.
Value is undefined after a debug exception.

R/W 0

NoSST 9 Indicates whether the single-step feature controllable by
the SSt bit is available in this implementation:

R 0

SSt 8 Controls if debug single step exception is enabled: R 0

R 7 Reserved. Must be written as zeros; returns zeros on
reads.

R 0

DIBImpr 6 Indicates that an Imprecise debug instruction break
exception occurred (due to a complex breakpoint).
Cleared on exception in debug mode.

R Undefined

DINT 5 Indicates that a debug interrupt exception occurred.
Cleared on exception in debug mode.

R Undefined

Table 5.35 Debug Register Field Descriptions (Continued)

Fields

Description Read/Write Reset StateName Bit(s)

Encoding Meaning

0 Single-step feature available

1 No single-step feature available

Encoding Meaning

0 No debug single-step exception
enabled

1 Debug single step exception enabled

Encoding Meaning

0 No debug interrupt exception

1 Debug interrupt exception

5.2 CP0 Register Descriptions

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 133

5.2.31 User Trace Data1 Register (CP0 Register 23, Select 3)/User Trace Data2 Regis-
ter (CP0 Register 24, Select 3)

A software write to any bits in the UserTraceData1 or UserTraceData2 registers will trigger a trace record to be writ-
ten indicating a type 1 or type 2 user format respectively. The trace output data is UNPREDICTABLE if these regis-
ters are written in consecutive cycles.

This register is only implemented if the MIPS iFlowtrace capability is present.

DIB 4 Indicates that a debug instruction break exception
occurred. Cleared on exception in debug mode.

R Undefined

DDBS 3 Indicates that a debug data break exception occurred on
a store. Cleared on exception in debug mode.

R Undefined

DDBL 2 Indicates that a debug data break exception occurred on
a load. Cleared on exception in debug mode.

R Undefined

DBp 1 Indicates that a debug software breakpoint exception
occurred. Cleared on exception in debug mode.

R Undefined

DSS 0 Indicates that a debug single-step exception occurred.
Cleared on exception in debug mode.

R/W 0

Table 5.35 Debug Register Field Descriptions (Continued)

Fields

Description Read/Write Reset StateName Bit(s)

Encoding Meaning

0 No debug instruction exception

1 Debug instruction exception

Encoding Meaning

0 No debug data exception on a store

1 Debug instruction exception on a store

Encoding Meaning

0 No debug data exception on a load

1 Debug instruction exception on a load

Encoding Meaning

0 No debug software breakpoint excep-
tion

1 Debug software breakpoint exception

Encoding Meaning

0 No debug single-step exception

1 Debug single-step exception

 CP0 Registers of the M6200 Core

134 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

Figure 5.31 User Trace Data1/User Trace Data2 Register Format

5.2.32 Debug2 Register (CP0 Register 23, Select 6)

This register holds additional information about Complex Breakpoint exceptions.

This register is only implemented if complex hardware breakpoints are present.

Figure 5.32 Debug2 Register Format

5.2.33 Debug Exception Program Counter Register (CP0 Register 24, Select 0)

The Debug Exception Program Counter (DEPC) register is a read/write register that contains the address at which
processing resumes after a debug exception or debug mode exception has been serviced.

For synchronous (precise) debug and debug mode exceptions, the DEPC contains either:

31 0

Data

Table 5.36 UserTraceData1/UserTraceData2 Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

Data 31:0 Software readable/writable data. When written, this triggers a user
format trace record out of the iFlowtrace interface that transmits the
Data field to trace memory.

R/W 0

31 4 3 2 1 0

0 Prm DQ Tup PaCo

Table 5.37 Debug2 Register Field Descriptions

Fields

Description Read/Write Reset StateName Bits

0 31:4 Reserved 0 0

Prm 3 Primed. Indicates whether a complex breakpoint with
an active priming condition was seen on the last debug
exception.

R Undefined

DQ 2 Data Qualified. Indicates whether a complex break-
point with an active data qualifier was seen on the last
debug exception.

R Undefined

Tup 1 Tuple. Indicates whether a tuple breakpoint was seen
on the last debug exception.

R Undefined

PaCo 0 Pass Counter. Indicates whether a complex breakpoint
with an active pass counter was seen on the last debug
exception

R/W Undefined

5.2 CP0 Register Descriptions

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 135

• The virtual address of the instruction that was the direct cause of the debug exception, or

• The virtual address of the immediately preceding branch or jump instruction, when the debug exception causing
instruction is in a branch delay slot or forbidden slot, and the Debug Branch Delay (DBD) bit in the Debug register
is set.

For asynchronous debug exceptions (debug interrupt, complex break), the DEPC contains the virtual address of the
instruction where execution should resume after the debug handler code is executed.

A read of the DEPC register (via MFC0) returns the following value in the destination GPR:

GPR[rt]  DebugExceptionPC31..1 || ISAMode0

That is, the upper 31 bits of the debug exception PC are combined with the lower bit of the ISAMode field and written
to the GPR.

Similarly, a write to the DEPC register (via MTC0) takes the value from the GPR and distributes that value to the
debug exception PC and the ISAMode field, as follows

DebugExceptionPC  GPR[rt]31..1 || 0
ISAMode  2#0 || GPR[rt]0

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the debug exception PC, and the lower bit of
the debug exception PC is cleared. The upper bit of the ISAMode field is cleared and the lower bit is loaded from the
lower bit of the GPR.

Figure 5.33 DEPC Register Format

31 0

DEPC

Table 5.38 DEPC Register Field Description

Fields

Description Read/Write ResetName Bit(s)

DEPC 31:0 The DEPC register is updated with the virtual address of
the instruction that caused the debug exception. If the
instruction is in the branch delay slot or forbidden slot, the
virtual address of the immediately preceding branch or
jump instruction is placed in this register.
Execution of the DERET instruction causes a jump to the
address in the DEPC.

 R/W 0

 CP0 Registers of the M6200 Core

136 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

5.2.34 Performance Counter Register (CP0 Register 25, select 0-3)

The M6200 processor defines two performance counters and two associated control registers, which are mapped to
CP0 register 25. The select field of the MTC0/MFC0 instructions are used to select the specific register accessed by
the instruction, as shown in Table 5.39.

Each counter is a 32-bit read/write register and is incremented by one each time the countable event, specified in its
associated control register, occurs. Each counter can independently count one type of event at a time.

Bit 31 of each of the counters are ANDed with an interrupt enable bit, IE, of their respective control register to deter-
mine if a performance counter interrupt should be signalled. The two values are then ORed together to create the
SI_PCI output. This signal is combined with one of the SI_Int pins to signal an interrupt to the M6200. Traditionally,
this signal is combined with one of the SI_Int pins to signal an interrupt to the M6200. However, this is no longer
needed as the core will internally route the interrupt to the IP number set by the IntCtl.IPPCI field. Counting is not
affected by the interrupt indication. This output is cleared when the counter wraps to zero, and may be cleared in soft-
ware by writing a value with bit 31 = 0 to the Performance Counter Count registers.

NOTE: The performance counter registers are connected to a clock that is stopped when the processor is in sleep
mode (if the top-level clock gater is present). Most events would not be active during that time, but others would be,
notably the cycle count. This behavior should be considered when analyzing measurements taken on a system. Fur-
ther, note that FPGA implementations of the core would generally not have the clock gater present and thus would
have different behavior than a typical ASIC implementation.

Table 5.39 Performance Counter Register Selects

Select[2:0] Register

0 Register 0 Control

1 Register 0 Count

2 Register 1 Control

3 Register 1 Count

5.2 CP0 Register Descriptions

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 137

Figure 5.34 Performance Counter Control Register

Table 5.41 describes the events countable with the two performance counters. The mode column indicates whether the
event counting is influenced by the mode bits (U,K,EXL). The operation of a counter is UNPREDICTABLE for
events which are specified as Reserved.

Performance counters never count in debug mode or when ERL = 1.

The performance counter resets to a low-power state, in which none of the counters will start counting events until
software has enabled event counting, using an MTC0 instruction to the Performance Counter Control Registers.

31 30 15 14 11 10 5 4 3 2 1 0

M 0 EventExt Event IE U 0 K EXL

Table 5.40 Performance Counter Control Register Field Descriptions

Fields

Description Read/Write Reset StateName Bits

M 31 If this bit is one, another pair of Performance Control and Counter
registers is implemented at an MTC0 or MFC0 select field value of
‘n+2’ and ‘n+3’.

R Preset

EventExt 14:11 Event specific to Virtualization Module if supported. Possible events
are listed in Table 5.41.

R/W Undefined

Event 10:5 Counter event enabled for this counter. Possible events are listed in
Table 5.41.

R/W Undefined

IE 4 Counter Interrupt Enable. This bit masks bit 31 of the associated
count register from the interrupt exception request output.

R/W 0

U 3 Count in User Mode. When this bit is set, the specified event is
counted in User Mode.

R/W Undefined

K 1 Count in Kernel Mode. When this bit is set, count the event in Ker-
nel Mode when EXL and ERL both are 0.

R/W Undefined

EXL 0 Count when EXL. When this bit is set, count the event when EXL =
1 and ERL = 0.

R/W Undefined

0 30:12, 2 Must be written as zeroes; returns zeroes when read. 0 0

Table 5.41 Performance Counter Events Sorted by Event Number

Event Num Counter 0 Mode Counter 1 Mode

0 Cycles No Cycles No

1 Instructions completed Yes Instructions completed Yes

2 Branch instructions Yes Branch taken Yes

3 Jump register r31 (return) instructions Yes Reserved NA

4 Jump register (not r31) instructions Yes Reserved NA

5 Reserved NA Reserved NA

6 Reserved NA Reserved NA

7 Reserved NA Reserved NA

8 Reserved NA Reserved NA

 CP0 Registers of the M6200 Core

138 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

9 Reserved NA Reserved NA

10 Reserved NA Reserved NA

11 Reserved NA Reserved NA

12 Reserved NA Reserved NA

13 Reserved NA Reserved NA

14 integer instructions completed Yes Reserved NA

15 loads completed Yes Stores completed Yes

16 J/JAL completed Yes microMIPS instructions completed Yes

17 no-ops completed Yes Integer multiply/divide completed Yes

18 Stall cycles No Reserved NA

19 SC instructions completed Yes SC instructions failed Yes

20 Prefetch instructions completed Yes Reserved NA

21 Reserved NA Reserved NA

22 Reserved NA Reserved NA

23 Exceptions taken Yes Reserved NA

24 Reserved NA Reserved NA

25 Reserved NA ALU stall cycles No

26 Instruction Tagram Access NA Reserved NA

27 Instruction Dataram Access NA Reserved NA

28 Instruction WSram Access NA Reserved NA

29 Reserved NA Reserved N/A

30 Data Tagram Access NA Reserved NA

31 Data Dataram Access NA Reserved NA

32 Data WSram Access NA Reserved NA

33 Reserved NA Reserved NA

34 Reserved NA Reserved NA

35 Reserved NA CP2 To/From Instructions completed Yes

36 Reserved NA Reserved NA

37 Reserved NA Reserved NA

38 Reserved NA Reserved NA

39 Reserved NA Reserved NA

40 Uncached stall cycles Yes Reserved NA

41 MDU stall cycles Yes Reserved NA

42 CP2 stall cycles Yes Reserved Yes

43 Reserved NA Reserved NA

44 Reserved NA Reserved NA

45 Load to Use stall cycles Yes Reserved NA

Table 5.41 Performance Counter Events Sorted by Event Number (Continued)

Event Num Counter 0 Mode Counter 1 Mode

5.2 CP0 Register Descriptions

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 139

46 Other interlock stall cycles Yes Reserved NA

47 Reserved NA Reserved NA

48 Reserved NA Reserved NA

49 Debug Instruction Trigger/Breakpoints Yes Debug Data Trigger/Breakpoints Yes

50 Reserved NA Reserved NA

51 Reserved NA Reserved NA

52 Reserved NA Reserved NA

53 Reserved NA Reserved NA

54 Reserved NA Reserved NA

55 Reserved NA Reserved NA

63 User-defined 0 No User-defined 1 No

56,
64-1023

Reserved NA Reserved NA

Table 5.42 Performance Counter Event Descriptions Sorted by Event Type

Event Name Counter
Event

Number Description

Cycles 0/1 0 Total number of cycles.
The performance counters are clocked by the top-level gated clock. If
the M6200 is built with that clock gater present, none of the counters
will increment while the clock is stopped, e.g., due to a WAIT instruc-
tion.

Instruction Completion: The following events indicate completion of various types of instructions

Instructions 0/1 1 Total number of instructions completed.

Branch instns 0 2 Counts all branch instructions that completed.

Jump register r31 (return) instns 0 3 Counts all Jump R31 instructions that completed.

Branch taken 1 2 Counts all branch instructions successfully taken

Jump register (not r31) 0 4 Counts all Jump $xx (not $31) and Jump and Link instructions (indi-
rect jumps).

Integer instns 0 14 Non-floating-point, non-Coprocessor 2 instructions.

Loads 0 15 Includes both integer and coprocessor loads.

Stores 1 15 Includes both integer and coprocessor stores.

J/JAL 0 16 Direct Jump (And Link) instruction.

microMIPS 1 16 All microMIPS instructions.

no-ops 0 17 This includes all instructions that normally write to a GPR, but where
the destination register was set to r0.

Integer Multiply/Divide 1 17 Counts all Integer Multiply/Divide instructions.

SC 0 19 Counts conditional stores regardless of whether they succeeded.

Table 5.41 Performance Counter Events Sorted by Event Number (Continued)

Event Num Counter 0 Mode Counter 1 Mode

 CP0 Registers of the M6200 Core

140 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

SC Fail 1 19 Counts conditional stores that failed, including incorrect programming
such as missing LL instruction or incorrect address pairs.

PREF 0 20 Note that this only counts PREFs that are actually attempted. PREFs
to uncached addresses or ones with translation errors are not counted.

Cp2 To/From instns 1 35 Includes move to/from, control to/from, and cop2 loads and stores.

Instruction execution events

SC instructions failed 1 19 SC instruction that did not update memory.
Note: While this event and the SC instruction count event can be con-
figured to count in specific operating modes, the timing of the events
is much different, and the observed operating mode could change
between them, causing some inaccuracy in the measured ratio.

Exceptions Taken 0 23 Any type of exception taken.

Debug instruction triggers 0 49 Number of times an Debug Instruction Trigger Point condition
matched (regardless of whether a debug exception occurred).

Debug data triggers 1 49 Number of times an Debug Data Trigger Point condition matched.

General Stalls

ALU stall cycles 1 25 Counts the number of cycles in which the ALU pipeline cannot
advance.

Stall cycles 0 18 Counts the total number of cycles in which no instructions are issued
by SRAM to ALU (the RF stage does not advance). This includes both
of the previous two events. However, this is different from the sum of
them, because cycles when both stalls are active will only be counted
once.

Specific stalls - these events will count the number of cycles lost due to this. This will include bubbles introduced by replays within the
pipe. If multiple stall sources are active simultaneously, the counters for each of the active events will be incremented.

Uncached stall cycles 0 40 Cycles in which the processor is stalled on an uncached fetch, load, or
store.

MDU stall cycles 0 41 Counts all cycles in which the integer pipeline waits on MDU return
data.

Cp2 stall cycles 0 42 Counts all cycles in which the integer pipeline waits on CP2 return
data.

Load to Use stall cycles 0 45 Counts all cycles in which the integer pipeline waits on Load return
dependent data.

Other interlocks stall cycles 0 46 Counts all cycles in which the integer pipeline waits on return data
from MFC0 and RDHWR instructions.

Implementation-specific events - Modules that can be replaced by the customer will have an event signal associated with them.

User-defined 0/1 63 Two ports are added to the core, which allows the user to connect
externally user-defined driven events to be counted using the perfor-
mance counter. Connected via PM_USER_0 and PM_USER_1.

Table 5.42 Performance Counter Event Descriptions Sorted by Event Type (Continued)

Event Name Counter
Event

Number Description

5.2 CP0 Register Descriptions

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 141

Figure 5.35 Performance Counter Count Register

5.2.35 ErrCtl Register (CP0 Register 26, Select 0)

The ErrCtl register controls parity/ECC protection of data and instruction SRAM. Parity and ECC protection can be
enabled or disabled using the PE bit.

Figure 5.36 ErrCtl Register Format

31 0

Counter

Table 5.43 Performance Counter Count Register Field Descriptions

Fields

Description Read / Write Reset StateName Bits

Counter 31:0 Counter R/W Undefined

31 30 29 28 27 26 0

EE Reserved SPR PE Reserved

Table 5.44 Errctl Register Field Descriptions

Fields

Description Read/Write Reset StateName Bit(s)

EE 31 ECC Enable. If ECC is configured, this bit enables or dis-
ables ECC protection for SRAM.

This field is writable only if the ECC option was configured
when the M6200 was built and at least one of the following
is true: IS_ECCPresent is asserted or DS_ECCPresent
is asserted. If ECC is not configured, this field is always
read as 0. Software can test for ECC support by attempting
to write a 1 to this field, then reading back the value.

R or R/W 0

SPR 28 When asserted, all Store Word (SW) instructions are redi-
rected from the DS interface to the IS interface of the
M6200 core.

R/W 0

Encoding Meaning

0 ECC disabled
1 ECC enabled

 CP0 Registers of the M6200 Core

142 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

5.2.36 CacheErr Register (CP0 Register 27, Select 0)

The CacheErr register provides an interface with the SRAM Interface Parity or ECC error-detection logic. When an
SRAM interface ECC error exception is signaled, the fields of this register are set accordingly.

Figure 5.37 CacheErr Register for Correctable Error

PE 27 Parity Enable. If parity is configured, this bit enables or dis-
ables parity protection for SRAM.

This field is writable only if the parity option was config-
ured when the M6200 was built and at least one of the fol-
lowing is true: IS_ParPresent is asserted or
DS_ParPresent is asserted. If parity not configured, this
field is always read as 0. Software can test for parity sup-
port by attempting to write a 1 to this field, then reading
back the value.

R/W 0

R 26:0 Reserved 0 0

31 30 29 28 27 26 0

ER EC BPAR Error location specifier

Table 5.45 CacheErr Register Field Descriptions for Correctable Error

Fields

Description Read / Write Reset StateName Bits

ER 31 This bit indicates whether an uncorrectable instruction error or data
error occurred.

R Undefined

Table 5.44 Errctl Register Field Descriptions (Continued)

Fields

Description Read/Write Reset StateName Bit(s)

Encoding Meaning

0 Parity disabled
1 Parity enabled

Encoding Meaning

0 Instruction error
1 Data error

5.2 CP0 Register Descriptions

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 143

EC 30 This bit indicates whether an uncorrectable error or correctable error
occurred.

R Undefined

BPAR 27 Bus parity error flag.
This bit indicates whether a parity error occurred.

Software can use this bit to distinguish between a parity error and an
ECC uncorrectable error.

R Undefined

ELS 26:0 Error Location Specifier. Refer to Table 5.46. If no correctable
errors are detected (EC=0), the Error Location Specifier field is not
valid and should not be used.

R Undefined

Table 5.46 Error Location Specifier for SRAM Data Array (DTWS=00)

Fields

Description Read / Write Reset StateName Bits

Reserved 29 x+1 Reserved. Must be written as zero; returns zero on reads. R Undefined

Table 5.45 CacheErr Register Field Descriptions for Correctable Error (Continued)

Fields

Description Read / Write Reset StateName Bits

Encoding Meaning

0 Uncorrectable error
1 Correctable error

Encoding Meaning

0 No parity error detected on the AXI interface
1 Parity error detected on DS or ISthe interface

 CP0 Registers of the M6200 Core

144 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

5.2.37 CacheErrAddr Register (CP0 Register 27, Select 1)

This register contains the address of the error in the SRAM.

Bit Number x:0 If ER=1 (DSRAM Data Array), then x=3, where [3:0] indicates the error bit
in the byte or corresponding 5-bit SEC check bits. The ECC code word lay-
out is:

8-bit byte is {D7, D6, D5, D4, D3, D2, D1, D0};
5-bit ECC checkbit is {P3,P2,P1,P0,P}. For example, if [3:0] is 7, then the
error bit is D3; if [3:0] is 4, error bit is P2.

If ER=0 (ISRAM Data Array), then x=6, where [6:0] indicates the error bit in
the 32-bit quantity or in the corresponding 7-bit SEC check bits. The ECC
code word layout is:

Table 5.46 Error Location Specifier for SRAM Data Array (DTWS=00) (Continued)

Fields

Description Read / Write Reset StateName Bits

D7 D6 D5 D4 P3 D3 D2 D1 P2 D0 P1 P0 P
12 11 10 9 8 7 6 5 4 3 2 1 0

D63 D62 D61 D60 D59 D58 D57
71 70 69 68 67 66 65

P6 D56 D55 D54 D53 D52 D51 D50 D49 D48 D47 D46 D45
64 63 62 61 60 59 58 57 56 54 53 52 51

D44 D43 D42 D41 D40 D39 D38 D37 D36 D35 D34 D33 D32
51 50 49 48 47 46 45 44 43 42 41 40 39

D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19
38 37 36 35 34 33 32 31 30 29 28 27 26

D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7
25 24 23 22 21 20 19 18 17 16 15 14 13
D7 D6 D5 D4 P3 D3 D2 D1 P2 D0 P1 P0 P
12 11 10 9 8 7 6 5 4 3 2 1 0

5.2 CP0 Register Descriptions

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 145

Figure 5.38 CacheErrAddr Register

5.2.38 ErrorEPC (CP0 Register 30, Select 0)

The ErrorEPC register is a read/write register, similar to the EPC register, except that ErrorEPC is used on error
exceptions. All bits of the ErrorEPC register are significant and must be writable. It is also used to store the program
counter on Reset, Soft Reset, nonmaskable interrupt (NMI) exceptions, and parity and ECC error exceptions.

The ErrorEPC register contains the virtual address at which instruction processing can resume after servicing an error.
This address can be:

• The virtual address of the instruction that caused the exception

• The virtual address of the immediately preceding branch or jump instruction when the error causing instruction is
in a branch delay slot or forbidden slot

Unlike the EPC register, there is no corresponding branch delay slot or forbidden slot indication for the ErrorEPC reg-
ister.

A read of the ErrorEPC register (via MFC0) returns the following value in the destination GPR:

GPR[rt]  ErrorExceptionPC31..1 || ISAMode0

That is, the upper 31 bits of the error exception PC are combined with the lower bit of the ISAMode field and written
to the GPR.

Similarly, a write to the ErrorEPC register (via MTC0) takes the value from the GPR and distributes that value to the
error exception PC and the ISAMode field, as follows

ErrprExceptionPC  GPR[rt]31..1 || 0
ISAMode  2#0 || GPR[rt]0

That is, the upper 31 bits of the GPR are written to the upper 31 bits of the error exception PC, and the lower bit of the
error exception PC is cleared. The upper bit of the ISAMode field is cleared and the lower bit is loaded from the lower
bit of the GPR.

31 0

VAddr

Table 5.47 CacheErrAddr Register Field Descriptions

Fields

Description Read / Write Reset StateName Bits

VAddr 31:0 Virtual Address for error data. R/W Undefined

 CP0 Registers of the M6200 Core

146 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

Figure 5.39 ErrorEPC Register Format

5.2.39 DeSave Register (CP0 Register 31, Select 0)

The Debug Exception Save (DeSave) register is a read/write register that functions as a simple memory location. This
register is used by the debug exception handler to save one of the GPRs that is then used to save the rest of the context
to a pre-determined memory area (such as in the Debug Probe). This register allows the safe debugging of exception
handlers and other types of code in which the existence of a valid stack for context saving cannot be assumed.

Figure 5.40 DeSave Register Format

5.2.40 KScratchn Registers (CP0 Register 31, Selects 2 to 7)

The KScratchn registers are optional read/write registers available for scratchpad storage by kernel-mode software.
These registers are 32 bits in width for 32-bit processors and 64 bits for 64-bit processors.

The existence of these registers is indicated by the KScrExist field in the Config4 register. The KScrExist field speci-
fies which of the selects are populated with a kernel scratch register.

Debug-mode software should not use these registers, but should instead use the DeSave register. If the Debug inter-
face is implemented, select 0 should not be used for a KScratch register. Select 1 is being reserved for future debug
use and should not be used for a KScratch register.

31 0

ErrorEPC

Table 5.48 ErrorEPC Register Field Description

Fields

Description Read/Write Reset StateName Bit(s)

ErrorEPC 31:0 Error Exception Program Counter. R/W Undefined

31 0

DESAVE

Table 5.49 DeSave Register Field Description

Fields

Description Read/Write Reset StateName Bit(s)

DESAVE 31:0 Debug exception save contents. R/W Undefined

Figure 5.41 KScratchn Register Format

31 0

Data

5.2 CP0 Register Descriptions

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 147

Table 5.50 KScratchn Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

Data 31:0 Scratch pad data saved by kernel software. R/W Undefined

Chapter 6

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 148

Hardware and Software Initialization of the M6200 Core

The M6200 processor core contains only a minimal amount of hardware initialization and relies on software to fully
initialize the device.

6.1 Hardware-Initialized Processor State

The M6200 processor core, like most other MIPS processors, is not fully initialized by hardware reset. Only a mini-
mal subset of the processor state is cleared. This is enough to bring the core up while running in unmapped and
uncached code space. All other processor state can then be initialized by software. SI_ColdResetN is asserted after
power-up to bring the device into a known state. Soft reset can be forced by asserting the SI_WarmResetN pin. This
distinction is made for compatibility with other MIPS processors.

6.1.1 Coprocessor 0 State

Much of the hardware initialization occurs in Coprocessor 0.

• StatusBEV - cleared to 1 on Reset/SoftReset

• StatusSR - cleared to 0 on Reset, set to 1 on SoftReset

• StatusNMI - cleared to 0 on Reset/SoftReset

• StatusERL - set to 1 on Reset/SoftReset

• Config fields related to static inputs - set to input value by Reset/SoftReset

• ConfigK0 - set to 010 (uncached) on Reset/SoftReset

• DebugDM - cleared to 0 on Reset/SoftReset (unless DbgBOOT option is used to boot into Debug Mode. Refer to
Chapter 8, “Debug Support in the M6200 Core” on page 152 for details.

• DebugLSNM - cleared to 0 on Reset/SoftReset

• DebugIBusEP - cleared to 0 on Reset/SoftReset

• DebugDBusEP - cleared to 0 on Reset/SoftReset

• DebugIEXI - cleared to 0 on Reset/SoftReset

• DebugSSt - cleared to 0 on Reset/SoftReset

6.2 Software Initialized Processor State

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 149

6.1.2 Bus State Machines

All pending bus transactions are aborted and the state machines in the SRAM interface unit are reset when a Reset or
SoftReset exception is taken.

6.1.3 Static Configuration Inputs

All static configuration inputs should only be changed during Reset.

6.1.4 Fetch Address

Upon Reset/SoftReset, DbgBOOT option, or SI_UseExceptionBase option is used, the fetch is directed to VA
0xBFC00000 (PA 0x1FC00000). This address is in KSeg1,which is unmapped and uncached.

6.2 Software Initialized Processor State

Software is required to initialize the following parts of the device.

6.2.1 Register File

The register file powers up in an unknown state with the exception of r0 which is always 0. Initializing the rest of the
register file is not required for proper operation in hardware. However, when simulating the operation of the core,
unknown values can cause problems. Thus, initializing the register file in the boot code may avoid simulation prob-
lems.

6.2.2 Coprocessor 0 State

Miscellaneous CP0 states need to be initialized prior to leaving the boot code. There are various exceptions which are
blocked by ERL=1 or EXL=1 and which are not cleared by Reset. These can be cleared to avoid taking spurious
exceptions when leaving the boot code.

• Cause: SW0/1 (Software Interrupts) should be cleared.

• Config: Typically, the K0, KU and K23 fields should be set to the desired Cache Coherency Algorithm (CCA)
value prior to accessing the corresponding memory regions. But in the M6200 core, all CCA values are treated
identically, so the hardware reset value of these fields need not be modified.

• Count: Should be set to a known value if Timer Interrupts are used.

• Compare: Should be set to a known value if Timer Interrupts are used. The write to compare will also clear any
pending Timer Interrupts (Thus, Count should be set before Compare to avoid any unexpected interrupts).

• Status: Desired state of the device should be set.

• Other CP0 state: Other registers should be written before they are read. Some registers are not explicitly write-
able, and are only updated as a by-product of instruction execution or a taken exception. Uninitialized bits should
be masked off after reading these registers.

Chapter 7

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 150

Power Management of the M6200 Core

The M6200 processor core offers a number of power management features, including low-power design, active
power management and power-down modes of operation. The core is a static design that supports a WAIT instruction
designed to signal the rest of the device that execution and clocking should be halted, reducing system power con-
sumption during idle periods.

7.1 Register-Controlled Power Management

Three pins, SI_EXL, SI_ERL, and EJ_DebugM, support the power-management function by allowing the user to
change the power state if an exception or error occurs while the core is in a low power state.

If an interrupt is taken while the device is in power down mode, that interrupt may need to be serviced depending on
the needs of the application. The interrupt causes an exception which in turn causes the EXL bit to be set. The setting
of the EXL bit causes the assertion of the SI_EXL signal on the external bus, indicating to the external agent that an
interrupt has occurred. At this time the external agent can choose to either speed up the clocks and service the inter-
rupt or let it be serviced at the lower clock speed.

The setting of the ERL bit causes the assertion of the SI_ERL signal on the external bus, indicating to the external
agent that an error has occurred. At this time the external agent can choose to either speed up the clocks and service
the error or let it be serviced at the lower clock speed.

Similarly, the EJ_DebugM signal indicates that the processor is in debug mode. Debug mode is entered when the pro-
cessor takes a debug exception. If fast handling of this is desired, the external agent can speed up the clocks.

The core provides three power-down signals that are part of the system interface. Two of the pins change state as the
corresponding bits in the CP0 Status register are set or cleared. The third pin indicates that the processor is in debug
mode:

• The SI_EXL signal represents the state of the EXL bit (1) in the CP0 Status register.

• The SI_ERL signal represents the state of the ERL bit (2) in the CP0 Status register.

• The EJ_DebugM signal indicates that the processor has entered debug mode.

7.2 Instruction-Controlled Power Management

The second mechanism for invoking power down mode is through execution of the WAIT instruction. If the bus is
idle at the time the WAIT instruction reaches the E stage of the pipeline the internal clocks are suspended and the
pipeline is frozen. However, the internal timer and some of the input pins (SI_Int[7:0], SI_NMI, SI_WarmResetN,
SI_ColdResetN, and EJ_DINT) continue to run. If the bus is not idle at the time the WAIT instruction reaches the W
stage, the pipeline stalls until the bus becomes idle, at which time the clocks are stopped. When the CPU is in instruc-
tion controlled power management mode, any enabled interrupt, NMI, debug interrupt, or reset condition causes the

7.2 Instruction-Controlled Power Management

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 151

CPU to exit this mode and resume normal operation. While the part is in this low-power mode, the SI_SLEEP signal
is asserted to indicate to external agents what the state of the chip is.

Chapter 8

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 152

Debug Support in the M6200 Core

The M6200 core provides for a optional Debug interface via the MIPS Debug Hub (MDH) and Advanced Peripheral
Bus (APB) interface. MDH provides the capability for connection to a JTAG or APB compatible debug system for
improved debug performance and support for multi-core systems. The MDH and APB are described in the MIPS®
Debug Hub Technical Reference Manual [6].

The M6200 core also provides a special Debug mode of operation, in addition to standard User mode and Kernel
modes of operation. Debug mode is entered after a debug exception is taken and continues until a debug exception
return (DERET) instruction is executed. During this time, the processor executes the debug exception handler rou-
tine.

8.1 APB Devices

In order to make APB devices compatible with the ARM CoreSight standard, which includes the APB as the debug
bus, the MDH uses the same minimal address mapping of devices. This mapping includes an area for a ROM block
that contains the read-only memory words which identify the SoC and each device. A ROM slot occupies a minimum
of 4KB (A[11:0]) and starts at address 0 (address range of 0x0-0xFFC). Core debug registers are assigned addresses
from 0x000 to 0x07F. Refer to the table below.

Values in the ROM table determine the start of the core debug registers (refer to Section 10.2.1 of IHI0031C).

8.2 Core APB Debug Registers

This section describes the APB-accessible debug registers that provide status and control of debug operations via the
MDH and APB.

The table below is a list of the Core APB Debug Registers, their offset addresses, names, function, and access types.

The hex values listed in the first column are APB A[6:2] addresses. All registers are accessed as 32 bits thus A1 and
A0 are always 0.

Table 8.1 Core Debug Register Address Map

Address Contents

0x000 - 0xFFC 4KB space as defined by CoreSight

0x000-0xEFC Device-specific registers (Figure B2-1 in IHI0029D)

0xFCC-0xFCF DEVTYPE register

0xFD0-0xFEF Peripheral ID registers

0xFF0-0xFFF Component ID registers

8.2 Core APB Debug Registers

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 153

Table 8.1 Core APB Debug Registers

Address A[6:2]
Register Name Short Description Function R/W

0x01
IDCODE

Device ID Identifies device's manufacturer, part number, revision,
and other device-specific information.

R

0x02
IMPCODE

Implementation code Identifies main debug features implemented and acces-
sible.

R

0x03
ADDRESS

dmseg address Address register for processor access. R

0x04
DATA

Data Data register for processor read/write access.
A write to Data will clear PrAcc. If PrAcc was not set at
time probe wrote Data, write cycle will stall (PRE-
ADY=0) until core does load or fetch from DMSEG.
A read from Data returns value and clears PrAcc. If
PrAcc was not set, read will stall (PREADY=0) until
core does store to DMSEG.

R/W

0x05
OCI CONTROL

Debug Control OCI CONTROL Register (OCR) provides access to
debug status and control.

R/W

0x06
DRSEG_ADDR

Address of drseg access Set by probe with address of drseg to read or write.
A[30:20] are ignored.
A[31] = 0 indicates DRSEG_ADDR does not
auto-increment
A[31] = 1 indicates DRSEG_ADDR auto-increments
after a read or write to DRSEG_DATA

R/W

0x07
DRSEG_DATA

Data value of drseg read or write DRSEG_DATA register is used to read or write 32 bits
of data to the drseg memory. The drseg address is sup-
plied by ADDRESS register (previously set).
 Read: A read cycle does a read from drseg; 32 bits only
 Write: A write cycle does a write to drseg; 32 bits only

Hardware sets PREADY=0 if there is a need to stretch
the read or write cycle which could occur if the drseg
access is extended by a memory arbiter and/or clock
synchronizer.

R/W

0x08
PCSAMPLE1

PCsample lower Lower 32 bits of PCsample R

0x09
PCSAMPLE2

PCsample upper Upper bits of PCsample, right justified R

0x0A
FDSTATUS

FDC Status & channel number Refer to FDC section below.
LS 4 bits are Tx and Rx FIFO status
 Read: TxChan field holds channel number when data
exists in FIFO
 Write: RxChan field is written with channel number
that probe sends to target. RxChan bits are sticky so
only need to be written if they change.

R

 Debug Support in the M6200 Core

154 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

0x0B
FDDATA

FDC Data Refer to FDC section below.
Read: 32 data bits from FIFO
Write: 32 data bits into FIFO

R/W

0X0C
DBG_OUT

Debug Output General-purpose register whose outputs are routed out
of the core on the EJ_DBG_OUT bus. A probe can
write any pattern to this register. The user can connect
any or all signals for his own use. The width is 32 bits.

R/W

0xFC8
DEVID

IMG Block Type. 4=CPU. Device configuration register used for block type.
Value - 32h00000004

R

0xFCC
DEVTYPE

MAJOR=5 (debug),
SUBTYPE=1 (core)

Value - 32h00000015 R

0xFD0
PIDR4

[7:4]size=4’b0000 (block size is 4K
bytes)
[3:0]DES_2 (4’b0010, MIPS JEDEC
continuation code)

Value - 32h00000002 R

0xFD4 Reserved Value - 32h00000000 R

0xFD8 Reserved Value - 32h00000000 R

0xFDC Reserved Value - 32h00000000 R

0xFE0
PIDR0

[7:0]CPU PRID Value - 32h0000000X R

0xFE4
PIDR1

[7:4]DES_0(4’b0111, bits 3:0 of MIPS
JEDEC code)
[3:0]PART_1 (4’b0000)

Value - 32h00000070 R

0xFE8
PIDR2

[7:4] CPU Major Revision
[3]1’b1 indicates JEDEC ID is used
[2:0]DES_1 (3’b010, bits 6:4 of MIPS
JEDEC code

Value - 32h000000XA R

0xFEC
PIDR3

[7:4] CPU Minor Revision
[3:0]CMOD (0=customer has not
modified component)

Value - 32h000000X0 R/W

0xFF0
CIDR0

8’h0D Value - 32h0000000D R

0xFF4
CIDR1

8’hE0 (Generic IP class) Value - 32h000000E0 R

0xFF8
CIDR2

8’h05 Value - 32h00000005 R

0xFFC
CIDR3

8’hB1 Value - 32h000000B1 R

Table 8.1 Core APB Debug Registers (Continued)

Address A[6:2]
Register Name Short Description Function R/W

8.2 Core APB Debug Registers

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 155

8.2.1 Device Identification (IDCODE) Register

The Device Identification register is defined by IEEE 1149.1, to identify the device's manufacturer, part number, revi-
sion, and other device-specific information. Table 8.2 shows the bit assignments defined for the read-only Device
Identification Register, and inputs to the core determine the value of these bits.

Figure 8.1 Device Identification Register Format

8.2.2 Implementation Register (IMPCODE)

The Implementation register is a 32-bit read-only register that identifies features implemented in the M6200

Figure 8.2 shows the format of the Implementation register; Table 8.3 describes the Implementation register fields.

Figure 8.2 Implementation Register Format

31 28 27 12 11 1 0

Version PartNumber ManufID R

Table 8.2 Device Identification Register

Fields

Description
Read/
Write Reset StateName Bit(s)

Version 31:28 Version (4 bits)
This field identifies the version number of the proces-
sor derivative.

 R EJ_Version[3:0]

PartNumber 27:12 Part Number (16 bits)
This field identifies the part number of the processor
derivative.

 R EJ_PartNumber[15:0]

ManufID 11:1 Manufacturer Identity (11 bits)
Accordingly to IEEE 1149.1-1990, the manufacturer
identity code shall be a compressed form of the
JEDEC Publications 106-A.

 R EJ_ManufID[10:0]

R 0 Reserved R 1

31 29 28 27 25 24 23 22 21 20 17 16 15 14 13 11 10 1 0

32/64-bit
Processor Dbgver 0 DINT

sup 0 ASID
size 0 0 No

DMA Type TypeInfo MIPS
32/64

 Debug Support in the M6200 Core

156 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

Table 8.3 Implementation Register Field Descriptions

Fields

Description
Read /
Write

Power-up
StateName Bits

Dbgver 31:29 Indicates the Debug version: R 0

DINTsup 24 Indicates support for DINT signal from probe: R Externally
driven

ASIDsize 22:21 Indicates size of the ASID field: R 0

NoDMA 14 Indicates no Debug DMA support: R 1

Type 13:11 Indicates what type of entity is associated with this TAP or
Debug block, and whether the TypeInfo field exists.

R 1

Encoding Meaning

0 OCI Single Core Debug Version 1
1-7 Reserved

Encoding Meaning

0 DINT signal from the probe is not sup-
ported by this processor

1 Probe can use DINT signal to make
debug interrupt on this processor

Encoding Meaning

0 No ASID in implementation
1 6-bit ASID
2 8-bit ASID
3 Reserved

Encoding Meaning

0 Reserved
1 No JTAG DMA support

Encoding Meaning

0 Legacy value - probably attached to a
CPU. TypeInfo field not implemented.

1 This Debug block is part of the CPU
and the TypeInfo field reflects
EBaseCPUNUM.

2 This TAP is attached to a CM and the
TypeInfo field is not used.

3 This TAP is attached to a DBU.
4 This TAP is attached to an MDH.

Others Reserved

8.2 Core APB Debug Registers

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 157

8.2.3 ADDRESS Register

This read-only Address register provides the 32-bit address for a processor access. The physical address that accom-
panies the processor access is an untranslated access to DMSEG in Debug mode.

8.2.4 DATA Register

The read/write Data register is used for opcode and data transfers during processor accesses. The operation of mem-
ory accesses to dmseg requires a handshake between the PrAcc bit in the OCI CONTROL Register and the APB
read/write state sequence.

APB Write: The core fetches an instruction from DMSEG and the probe satisfies that by writing 32 bits to DATA.
The completion of the APB write cycle clears PrAcc and supplies DATA to the processor. If PrAcc is not set, or the
current processor access is not a load or fetch at the time the probe writes to DATA, the write will stall (PREADY=0)
until the core does a load or fetch from DMSEG. The same protocol applies when the core does a (memory) load from
dmseg.

APB Read: The core does a store to DMSEG. The probe reads DATA, which returns the data value stored and clears
PrAcc at the completion of the APB read cycle. If PrAcc is not set. or the current processor access is not a store, the
APB read will stall (PREADY=0) until the core does a store to DMSEG. If the core never does a store, the APB cycle
can be aborted.

8.2.5 Fastdata

Fastdata provides an efficient way to upload and download data between target memory and debug memory. A pro-
gram is run on the target to handshake memory to/from the APB via the DMSEG address space.

TypeInfo 10:1 Identifier information specific to the type of entity associ-
ated with this TAP or Debug block. The attached entity is
specified by the Type field.

R 0

MIPS32/64 0 Indicates 32-bit or 64-bit processor: R 0

0 28:25, 23,
20:15

Ignored on writes; return zeros on reads. R 0

Table 8.3 Implementation Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Power-up
StateName Bits

Attached
Entity Meaning

CPU Reflects EBaseCPUNUM of the asso-
ciated CPU

Others Reserved

Encoding Meaning

0 32-bit processor
1 64-bit processor

 Debug Support in the M6200 Core

158 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

The following is a probe sequence that implements Fastdata:

– Load fastdata program into memory (for example, 0x80000000), preferably into cache lines.

– Have debug code jump to the fastdata monitor (while remaining in debug mode).

– Fastdata runs in debug mode, reading from DMSEG and writing to the target.

– Probe now writes 32-bit values into the Data register, one at a time. The core debug hardware maintains
PREADY=0 until the core has read the Data register and saved the value in system memory.

– Probe completes a set of downloaded values, then jumps back to a DMSEG location, at which time the probe
takes control of core instruction execution, continuing debug-mode operation.

NOTE: In non-fastdata mode, the probe can access the PRAcc bit in the OCI CONTROL Register if needed. Any
core instruction fetch or read/write to any address in DMSEG will assert the PRAcc bit and handshake a new DATA
value with the probe.

8.2.6 OCI CONTROL Register (OCR)

The 32-bit OCI CONTROL Register (OCR) handles processor reset and soft reset indication, Debug Mode indica-
tion, access start, finish, size, and read/write indication. The OCR also:

• Controls debug vector location and indication of serviced processor accesses

• Allows a debug interrupt request

• Indicates processor low-power mode

• Allows implementation-dependent processor and peripheral resets

R/W register bits return their written value on a subsequent read, unless other behavior is defined. Internal synchroni-
zation ensures that a written value is updated for an immediate subsequent read.

When first attached, the probe must assert ProbTrap and ProbEn in the OCI CONTROL Register to control the core
with a probe.

Figure 8.3 shows the format of the OCI CONTROL Register; Table 8.4 describes the OCI CONTROL register fields.

Figure 8.3 OCI CONTROL Register Format

31 30 29 28 24 23 22 21 20 19 18 17 16 15 14 13 12 11 4 3 2 1 0

Rocc Psz 0 VPED Doze Halt Per
Rst

PRn
W

Pr
Acc 0 Pr

Rst
Prob
En

Prob
Trap

ISAOn
Debug

Dbg
Brk 0 DM SLEEP DPD BM

8.2 Core APB Debug Registers

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 159

Table 8.4 OCI CONTROL Register Field Descriptions

Fields

Description
Read /
Write Reset StateName Bits

Rocc 31 Indicates if a processor reset or soft reset has occurred since the bit was cleared:

The Rocc bit stays set as long as reset is applied.
This bit must be cleared to acknowledge that the reset was detected. The Debug
Control register is not updated in the Update-DR state unless Rocc is 0 or writ-
ten to 0 at the same time. This is in order to ensure correct handling of the pro-
cessor access after reset.

R/W0 1

Psz 30:29 Indicates the size of a pending processor access, in combination with the
Address register:

This field is valid only when a processor access is pending; otherwise, the read
value is undefined.

R Undefined

VPED 23 For processors with MIPS MT Module, this bit is a status bit that indicates
whether the VPE is currently disabled. A value of 1 indicates that the VPE is
disabled and the rest of the Debug state is not valid. If this bit is 0, the processor
is either not an MT core or it is an MT core that is currently enabled. Hence, a
non-MT core must implement this bit and tie it to zero.

R 0 for non-MT
cores and 1

for MT cores

Doze 22 Indicates if the processor is in low-power mode:

Doze indicates Reduced Power (RP), WAIT, and other implementation-depen-
dent low-power modes.
If the implementation does not support low-power modes, then this bit always
reads as 0.

R 0

Encoding Meaning

0 No reset occurred
1 Reset occurred

Encoding

32-bit
Processor

MIPS32/64=0

64-bit
Processor

MIPS32/64=1

0 Byte Byte
1 Halfword Halfword
2 Word Word, 5-7 bytes
3 Triple Triple, Double-

word

Encoding Meaning

0 Processor is not in low-power mode
1 Processor is in low-power mode

 Debug Support in the M6200 Core

160 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

Halt 21 Indicates if the internal system bus clock is running:

Halt indicates WAIT, and other implementation-dependent events that stop the
system bus clock.
If the implementation does not support a halt state, this bit always reads as 0.

R 0

PerRst 20 Controls the peripheral reset with implementation-dependent behavior:

This bit PerRst might not have any effect. There is no inherent indication of
whether the PerRst is effective, so the user must consult system documentation.
When this bit is changed, then it is only guaranteed that the new value has taken
effect when it can be read back here.
This bit is read-only (R) and reads as zero if not implemented.

R/W 0

PRnW 19 Indicates read or write of a pending processor access:

This value is defined only when a processor access is pending.

R Undefined

PrAcc 18 Indicates a pending processor access and controls finishing of a pending proces-
sor access. When read:

This bit is set and cleared in hardware by APB cycles rather than probe firm-
ware. If an APB cycle has to be aborted by the MDH, the probe can then check
and even change the value of PrAcc

R/W0 0

Table 8.4 OCI CONTROL Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

Encoding Meaning

0 Internal system bus clock is running
1 Internal system bus clock is stopped

Encoding Meaning

0 No peripheral reset applied
1 Peripheral reset applied

Encoding Meaning

0 Read processor access, for a fetch/load
access

1 Write processor access, for a store
access

Encoding Meaning

0 No pending processor access
1 Pending processor access

8.2 Core APB Debug Registers

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 161

PrRst 16 Controls the processor reset with implementation-dependent behavior:

The PrRst bit might not have any effect. There is no inherent indication of an
effective PrRst, so the user must consult system documentation.
If a reset occurs on PrRst, then all parts of the system are reset. It is not allowed
for only some device to be reset.
When this bit is changed then it is guaranteed that the new value has taken
effect when it can be read back here. However, because a processor reset clears
this bit, then the effect of setting it can be that the bit is cleared when the reset
takes effect. In this case, the Rocc bit should be observed to detect that the reset
took effect.
This bit is read-only (R) and reads as zero if not implemented.

R/W 0

ProbEn 15 Controls whether the probe handles accesses to the dmseg segment through ser-
vicing of processors accesses:

The ProbEn bit is reflected in a read-only bit in the Debug Control Register
(DCR) bit 0 (see Section 8.4 on page 166).
When this bit is changed, it is guaranteed that the new value has taken effect in
the DCR when it can be read back here. However, a change of the ProbEn prior
to setting the DbgBrk bit will be effective for the debug handler.
Not all combinations of ProbEn and ProbTrap are allowed (see Section
4.7 “Debug Exception Processing”).
When first attached, the probe must assert ProbTrap and ProbEn, located in the
Debug Control Register to control the core with a probe.

R/W See Section
4.7 on

page 68

Table 8.4 OCI CONTROL Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

Encoding Meaning

0 No processor reset applied
1 Processor reset applied

Encoding Meaning

0 Probe will not serve processor
accesses

1 Probe will service processor accesses

 Debug Support in the M6200 Core

162 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

ProbTrap 14 Controls location of the debug exception vector:

When ProbTrap=1, the debug exception vector is relocated to probe-controlled
Debug memory, at the fixed location 0xFFFF FFFF FF20 0200.
When this bit is changed, it is guaranteed that the new value is indicated to the
processor when it can be read back here. However, a change of the ProbTrap
prior to setting the DbgBrk bit will be effective at the debug exception.
Not all combinations of ProbEn and ProbTrap are allowed as described in
Section 4.7 on page 68.
When first attached, the probe must assert ProbTrap and ProbEn, located in the
Debug Control Register to control the core with a probe.

R/W See Section
4.7 on

page 68

ISAOnDe-
bug

13 Determines the Instruction Set Architecture to be used on a debug exception
when ProbTrap=1:

This bit is read-only and returns 0 if microMIPS is not implemented. This is bit
read-only and returns 1 if only microMIPS is implemented.

R/W Bit 0 of
Config3 ISA

field - 1 if
only micro-
MIPS imple-

mented;
otherwise 0.

DbgBrk 12 Requests a Debug Interrupt exception to the processor when this bit is written as
1. The debug exception request is ignored if the processor is already in debug
mode at the time of the request. A write of 0 is ignored.
The debug request restarts the processor clock if the processor was in a
low-power mode.
The read value indicates a pending Debug Interrupt exception requested
through this bit:

The read value can, but is not required to, indicate other pending DINT debug
requests (for example, through the DINT signal).
This bit is cleared by hardware when the processor enters Debug Mode.

R/W1 See Section
8.5 on

page 170

DM 3 Indicates if the processor is in Debug Mode: R 0

Table 8.4 OCI CONTROL Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

Encoding Meaning

0 See Section 4.7 “Debug Exception
Processing”.

1 0xFFFF FFFF FF20 0200

Encoding Meaning

0 Use MIPS32/MIPS64 ISA
1 Use microMIPS ISA

Encoding Meaning

0 No pending Debug Interrupt exception
requested through this bit

1 Pending Debug Interrupt exception

Encoding Meaning

0 Processor is not in Debug Mode
1 Processor is in Debug Mode

8.2 Core APB Debug Registers

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 163

8.2.7 DRSEG_ADDR Register

DRSEG_ADDR allows a probe to read or write drseg registers located in 0xFF300000 - 0xFF3FFFFF (word-only
accesses). The probe first loads a value into DRSEG_ADDR with the drseg address to be read from or written to.
Then the probe reads from or writes to a 32-bit value to the DRSEG_DATA register.

A[30:20] are ignored by a write. A[1:0] are always 0.

A[31] is used to determine if the register is auto-incrementing or not.

SLEEP 2 Indicates if the processor is in Sleep Mode:

The purpose of the bit is for a probe to sample to know if some functions are not
accessible because the core is in sleep mode and for power consumption rea-
sons, has turned off certain accesses. One function is DRSEG access; if
Sleep=1, the probe will need to wake up the core by generating a debug inter-
rupt before accessing DRSEG using APB accesses.

R 0

DPD 1 DisableProbeDebug. Reflects the state of the signal EJ_DisableProbeDebug
and allows a probe to discover if probe debug has been disabled.

R

BM 0 Indicates processor mode of operation. If BOOTMODE is set to NORMAL and
the core receives a warm reset, then DbgBrk, ProbTrap, and ProbEn are reset to
0. If BOOTMODE is set to DbgBOOT and the core receives a warm reset then
DbgBrk, ProbTrap, and ProbEn are set to 1.

If the core receives a cold reset, DbgBrk, ProbTrap, and ProbEn are set to 0,
regardless of the setting of this bit.

R/W 0

0 28:24,
17, 13,
11:4,

Must be written as zeros; return zeros on reads. 0 0

Table 8.4 OCI CONTROL Register Field Descriptions (Continued)

Fields

Description
Read /
Write Reset StateName Bits

Encoding Meaning

0 CPU is fetching and executing
instructions normally.

1 CPU has executed a Wait instruction

Encoding Meaning

0 Probe not disabled
1 Probe disabled

Encoding Meaning

0 NORMAL
1 DbgBOOT

 Debug Support in the M6200 Core

164 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

A[31] = 0 means DRSEG_ADDR is not auto-incrementing

A[31] = 1 means DRSEG_ADDR is auto-incrementing. Hardware increments the value by 4 (word granular) when-
ever a read or write occurs to DRSEG_DATA. The purpose is to speed up the reading of iFlowtrace data. Once
DRSEG_ADDR is set and A[31]=1, successive reads of DRSEG_DATA will read the next 32 bits of trace data. This
will speed up the reading of trace data considerably.

8.2.8 DRSEG_DATA Register

DRSEG_DATA is a new register with a new function. It allows a probe to read or write drseg registers located in
0xFF300000 - 0xFF3FFFFF (word-only accesses). The probe must first load DRSEG_ADDR with the drseg address
to be read from or written to. Then the probe reads from or writes to a 32 bit value to this register.

It should be noted that the probe can now access the Debug Control Register (DCR), which is mapped to offset 0 of
drseg - directly with an APB write to DRSEG_ADDR with value 0 followed by a DRSEG_DATA read or write.

8.2.9 PCSAMPLE Registers

There are two registers to be read for PCSAMPLE. Core hardware must do the following:

• When a read occurs from PCSAMPLE1 register, the lower 32 bits are put on the APB and the upper bits are
stored in a temporary register.

• The next read must be from PCSAMPLE2 register where the hardware places the upper bits from the temporary
register onto the APB.

Note that if only the PCSAMPLE1 bits are needed there is no reason to sample PCSAMPLE2.

The layout of the two registers is shown below.

Because PCSAMPLE is limited to two 32-bit registers. the following restrictions apply to the M6200 core:

• the DCR.PCSe turns all sampling off (0) or on (1) (no change)

• the DCR.DASe field determines execution (0) or data address (1) sampling. The reset value is 0. This is now PC
address or data address sampling; one or the other but not both at the same time.

Figure 8.4 PCSAMPLE1

31 1 0

PC Address or Data Address [31:1] NEW

Figure 8.5 PCSAMPLE2

31 27 26 19 18 11 10 9 0

Reserved GuestID TC K ASID

8.2 Core APB Debug Registers

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 165

8.2.10 FDSTATUS and FDDATA Registers

There are two addressable registers, FDSTATUS and FDDATA, used by the probe to send and receive data to and
from the core over the FDC. Note that TX and RX (transmit and receive) terms are relative to the core, so from the
probe point of view the terms are opposite. From the APB perspective, Read and Write functions access different reg-
isters and do different operations.

The four flag bits indicate the status of the transmit and receive FIFOs. The two that are of interest are:

• TxE: if 0, transmit FIFO is not empty so 1) the TxChan field is valid and 2) the FDDATA register contains trans-
mitted data.

• RxF: if 0, receive FIFO is not full so if there is data to be sent to the target, the channel number can be written to
the RxChan field and the 32 bits of data can be written to the FDDATA register.

FDSTATUS Read:

This register provides status of the Tx and Rx FIFOs and the channel number (TxChan) associated with a word trans-
mitted from the target and channel number (RxChan) sent to the target by the probe. When FDC is active, i.e. sup-
ported by probe software to provide a “UART over JTAG”, the FDSTATUS is polled to determine if there is
transmitted data from the target and polled to determine if there is room to send data to the target.

Probe software could use the TxCount to know how many words of transmitted data are currently in the FIFO but the
probe still has to read FDSTATUS to get the channel number associated with each FDDATA so there may not be
much utility to using it.

FDSTATUS Write:

When the Receive FIFO is not full the probe can write an entry into it. This consists of 4 channel bits and 32 data bits.
The 4 channel bits are written into the RxChan field of FDSTATUS first followed by a write to the FDDATA which
cause the 4+32 bits to be written into the Receive FIFO.

The RxChan bits are sticky meaning if multiple words of data are being sent on the same channel (which will be com-
mon), the RxChan only has to be written once.

FDDATA READ:

If FDSTATUS.TxE = 0, the probe extracts the FDSTATUS.TxChan field from FDSTATUS, then reads FDDATA and
passes the 32+4 bits to the host.

FDDATA Write:

If FDSTATUS.RxF = 0 and the host has data to send to the target, the probe can write another word of data to
FDDATA. FDSTATUS.RxChan field must first be written with the channel being sent on, but only once if the channel
stays the same.

Figure 8.6 FDSTATUS Debug Register

31 24 23 16 15 13 12 11 8 7 4 3 2 1 0

Tx_Count Rx_Count 0 GenInt TxChan RxChan RxE RxF TxE TxF

 Debug Support in the M6200 Core

166 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

8.3 CP0 Debug Registers

Four debug registers (DEBUG, DEBUG2, DEPC, and DESAVE) are included in the MIPS Coprocessor 0 (CP0) register
set. The DEBUG and DEBUG2 registers show the cause of the debug exception and are used for setting up single-step
operations. The DEPC (Debug Exception Program Counter) register holds the address on which the debug exception
was taken, which is used to resume program execution after the debug operation finishes. Finally, the DESAVE (Debug
Exception Save) register enables the saving of general-purpose registers used during execution of the debug excep-
tion handler. These registers are described in detail in Chapter 5, “CP0 Registers of the M6250 Core” on page 111.
The M6200 also includes additional debug registers that provide status and control of debug operations. Those regis-
ters are described in the following section.

8.4 Debug Control Register (DCR) Register

The Debug Control Register (DCR) controls and provides information about debug issues, and is always provided
with the CPU core. The register is memory-mapped in drseg at offset 0x0.

The DataBrk and InstBrk bits indicate if hardware breakpoints are included in the implementation, and debug soft-
ware is expected to read hardware breakpoint registers for additional information.

Hardware and software interrupts are maskable for non-debug mode with the INTE bit, which works in addition to
the other mechanisms for interrupt masking and enabling. NMI is maskable in non-debug mode with the NMIE bit,
and a pending NMI is indicated through the NMIP bit.

The Control register is described in Figure 8.7 and Table 8.5

8.4 Debug Control Register (DCR) Register

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 167

Figure 8.7 DCR Register Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DbgBrk_Over
ride 0 ENM PCIM 0 DASQ DASe DAS 0 Data

Brk
Inst
Brk

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IVM DVM 0 PCRe RD
Vec CBT PCS PCR PCSe IntE NMIE NMI

pend 0 Prob
En

Table 8.5 DCR Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

DbgBrk_Override 31 Override DbgBrk and DINT disable.

Re-enable DbgBrk and DINT signal during boot.

Allows DbgBrk to be asserted by a probe (or assertion of
DINT signal), resulting in a request for a Debug Inter-
rupt exception from the processor. This provides a
means of recovering the CPU from crash, hang, loop or
low-power mode.

This feature can allow a Debug Executive to communi-
cate with the probe over the Fast Debug Channel (FDC)
and provides a host-based debugger the ability to query
the target processor via Debug Executive commands,
useful for determining cause of hang.

Software can write this bit and read back to determine if
the Secure Debug feature is implemented.

R/W

If not
imple-

mented,
must be

written as
zero;
return

zeros on
reads.

0

ENM 29 Endianess in which the processor is running in kernel
and Debug Mode:

R 0

PCIM 26 Configure PC Sampling to capture all executed
addresses or only those that miss the instruction cache
This feature is not supported and this bit will read as 0.

R/W 0

R 25 Reserved R 0

Encoding Meaning

0 Little endian
1 Big endian

Encoding Meaning

0 All PCs captured
1 Capture only PCs that miss the cache.

 Debug Support in the M6200 Core

168 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

DASQ 24 Qualifies Data Address Sampling using a data break-
point.

R/W 0

DASe 23 Enables Address Sampling. R/W 0

DAS 22 Indicates if the Data Address sampling is implemented. R Preset

DataBrk 17 Indicates if data hardware breakpoint is implemented: R Preset

InstBrk 16 Indicates if instruction hardware breakpoint is imple-
mented:

R Preset

IVM 15 Indicates if inverted data value match on data hardware
breakpoints is implemented:

R Preset

Table 8.5 DCR Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
StateName Bits

Encoding Meaning

0 All data addresses are sampled
1 Sample matches of data breakpoint 0

Encoding Meaning

0 Instruction Address sampling enabled.
1 Data Address sampling enabled.

Encoding Meaning

0 Data Address Sampling not imple-
mented

1 Data Address Sampling implemented

Encoding Meaning

0 No data hardware breakpoint imple-
mented

1 Data hardware breakpoint imple-
mented

Encoding Meaning

0 No instruction hardware breakpoint
implemented

1 Instruction hardware breakpoint
implemented

Encoding Meaning

0 No inverted data value match on data
hardware breakpoints implemented

1 Inverted data value match on data
hardware breakpoints implemented

8.4 Debug Control Register (DCR) Register

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 169

DVM 14 Indicates if a data value store on a data value breakpoint
match is implemented:

R Preset

PCRe 12 PC Sampling rate extended. Values 1000 to 1100 map to
values 213 to 217 cycles, respectively. That is, a PC sam-
ple is written out every 8192, 16,384, 32,768, 65,536, or
131,072 cycles respectively. Reserved values are 1101,
1110, and 1111. The external probe or software is
allowed to set this value to the desired sample rate.

R/W 0

RDVec 11 Enables relocation of the debug exception vector. The
value in the DebugVectorAddr register is used for Debug
exceptions when ProbTrap=0,and RDVec=1.

R/W 0

CBT 10 Indicates if complex breakpoint block is implemented: R Preset

PCS 9 Indicates if the PC Sampling feature is implemented. R Preset

PCR 8:6 PC Sampling rate. Values 000 to 111 map to values 25 to
212 cycles, respectively. That is, a PC sample is written
out every 32, 64, 128, 256, 512, 1024, 2048, or 4096
cycles respectively. The external probe or software is
allowed to set this value to the desired sample rate.

R/W 0

PCSe 5 If the PC sampling feature is implemented, then indi-
cates whether PC sampling is initiated or not. That is, a
value of 0 indicates that PC sampling is not enabled and
when the bit value is 1, then PC sampling is enabled and
the counters are operational.

R/W 0

Table 8.5 DCR Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
StateName Bits

Encoding Meaning

0 No data value store on a data value
breakpoint match implemented

1 Data value store on a data value break-
point match implemented

Encoding Meaning

0 No complex breakpoint block imple-
mented

1 Complex breakpoint block imple-
mented

Encoding Meaning

0 No PC Sampling implemented
1 PC Sampling implemented

 Debug Support in the M6200 Core

170 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

8.5 Hardware Breakpoints

There are several types of simple hardware breakpoints. These breakpoints stop the normal operation of the CPU and
force the system into debug mode. There are two types of simple hardware breakpoints implemented in the M6200
core: Instruction breakpoints and Data breakpoints. Additionally, complex hardware breakpoints are included, which
allow detection of more intricate sequences of events.

The M6200 core can be configured with the following breakpoint options:

• No data or instruction

• Two data and four instruction breakpoints

IntE 4 Hardware and software interrupt enable for Non-Debug
Mode, in conjunction with other disable mechanisms:

R/W 1

NMIE 3 Non-Maskable Interrupt (NMI) enable for Non-Debug
Mode:

R/W 1

NMIpend 2 Indication for pending NMI: R 0

ProbEn 0 Probe Enable. This bit reflects the ProbEn bit in the OCI
CONTROL register:

R Same value
as ProbEn
in OCR

0 30, 28:27,
25, 21:18,

13, 1

Must be written as zeros; return zeros on reads. 0 0

Table 8.5 DCR Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
StateName Bits

Encoding Meaning

0 Interrupt disabled
1 Interrupt enabled depending on other

enabling mechanisms

Encoding Meaning

0 NMI disabled
1 NMI enabled

Encoding Meaning

0 No NMI pending
1 NMI pending

Encoding Meaning

0 No accesses to dmseg allowed
1 Accesses to dmseg by Debug probe ser-

vices allowed

8.5 Hardware Breakpoints

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 171

• Four data and eight instruction breakpoints, with complex breakpoints

Instruction breakpoints match on instruction execution operations, and the breakpoint is set on the virtual address. A
mask can be applied to the virtual address to set breakpoints on a range of instructions.

Data breakpoints match on load/store transactions, and the breakpoint is set on a virtual address value, with the same
single address or address range as the Instruction breakpoint. Data breakpoints can be set on a load, a store, or both.
Data breakpoints can also be set to match on the operand value of the load/store operation, with byte-granularity
masking. Finally, masks can be applied to both the virtual address and the load/store value.

In addition, the M6200 core has a configurable feature to support data and instruction address-range triggered break-
points, where a breakpoint can occur when a virtual address is either within or outside a pair of 32-bit addresses.
Unlike the traditional address-mask control, address-range triggering is not restricted to a power-of-two boundary.

Complex breakpoints utilize the simple instruction and data breakpoints and break when combinations of events are
seen. Complex break features include:

• Pass Counters - Each time a matching condition is seen, a counter is decremented. The break or trigger will
only be enabled when the counter has counted down to 0.

• Tuples - A tuple is the pairing of an instruction and a data breakpoint. The tuple will match if both the virtual
address of the load or store instruction matches the instruction breakpoint, and the data breakpoint of the
resulting load or store address and optional data value matches.

• Priming - This allows a breakpoint to be enabled only after other break conditions have been met. Also
called sequential or armed triggering.

• Qualified - This feature uses a data breakpoint to qualify when an instruction breakpoint can be taken. Once
a load matches the data address and the data value, the instruction break will be enabled. If a load matches
the address, but has mis-matching data, the instruction break will be disabled.

8.5.1 Data Breakpoints

Data breakpoints occur on load/store transactions. Breakpoints are set on virtual address values, similar to the Instruc-
tion breakpoint. Data breakpoints can be set on a load, a store, or both. Data breakpoints can also be set based on the
value of the load/store operation. Finally, masks can be applied to both the virtual address and the load/store value.

Data breakpoints compare the transaction type (TYPE), which may be load or store, the virtual address of the transac-
tion (ADDR), accessed bytes (BYTELANE) and data value (DATA), with the registers for each data breakpoint
including masking or qualification on the transaction properties. When a data breakpoint matches, a debug exception
and/or a trigger is generated, and an internal bit in the data breakpoint registers is set to indicate that the match
occurred. The match is precise in that the debug exception or trigger occurs on the instruction that caused the break-
point to match.

8.5.2 Complex Breakpoints

The complex breakpoint unit utilizes the instruction and data breakpoint hardware and looks for more specific match-
ing conditions. There are several different types of enabling that allow more exact breakpoint specification. Tuples
add an additional condition to data breakpoints of requiring an instruction breakpoint on the same instructions. Pass
counters are counters that decrement each time a matching breakpoint condition is taken. When the counter reaches 0,
the break or trigger effect of the breakpoint is enabled. Priming allows a breakpoint to only be enabled when another
trigger condition has been detected. Data qualification allows instruction breakpoints to only be enabled when a cor-
responding load data triggerpoint has matched both address and data. Data qualified breakpoints are also disabled if a

 Debug Support in the M6200 Core

172 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

load is executed that matches on the address portion of the triggerpoint, but has a mismatching data value. The com-
plex breakpoint features can be combined to create very complex sequences to match on.

In addition to the breakpoint logic, the complex break unit also includes a Stopwatch Timer block. This counter can
be used to measure time spent in various sections. It can either be free-running, or it can be set up to start and stop
counting based on a trigger from instruction breakpoints.

8.5.3 Conditions for Matching Breakpoints

A number of conditions must be fulfilled in order for a breakpoint to match on an executed instruction or a data trans-
action, and the conditions for matching instruction and data breakpoints are described below. The breakpoints only
match for instructions executed in non-debug mode, thus never on instructions executed in debug mode.

The match of an enabled breakpoint can either generate a debug exception or a trigger indication. The BE and/or TE
bits in the IBCn or DBCn registers are used to enable the breakpoints.

Debug software should not configure breakpoints to compare on an ASID value unless a TLB is present in the imple-
mentation.

8.5.3.1 Conditions for Matching Instruction Breakpoints

There are two methods for matching conditions, Equality and Mask, or Address Range.

Equality and Mask

When an instruction breakpoint is enabled, that breakpoint is evaluated for the address of every executed instruction
in non-debug mode, including execution of instructions at an address causing an address error on an instruction fetch.
The breakpoint is not evaluated on instructions from a speculative fetch or execution, nor for addresses which are
unaligned with an executed instruction.

A breakpoint match depends on the virtual address of the executed instruction (PC) which can be masked at bit level.
The registers for each instruction breakpoint have the values and mask used in the compare, and the equation that
determines the match is shown below in C-like notation.

IB_match =
(<all 1’s> == (IBMnIBM | ~ (PC ^ IBAnIBA))

The match indication for instruction breakpoints is always precise, i.e. indicated on the instruction causing the
IB_match to be true.

Address Range

Cores may optionally support the address range triggered instruction breakpoints.When this feature is configured, the
following changes are made to the instruction breakpoint registers:

• IBAn : represents the upper limit of a address range boundary

• IBMn : represents the lower limit of the address range boundary

In addition, the following bits must be supported:

IBCn[6].hwarts : a preset value of 1 indicates that the address range triggered instruction breakpoint feature is sup-
ported for this particular instruction breakpoint channel. This bit is read-only.

8.5 Hardware Breakpoints

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 173

IBCn[5].excl : a value of 0 indicates that the breakpoint will match for addresses inclusive (within) the range defined
by IBMn and IBAn. A value of 1 indicates that the breakpoint will match for addresses exclusive (outside) to the range
defined by IBMn and IBAn. This bit is writeable.

IBCn[4].hwart : a value of 0 indicates that the breakpoint will match using the “Equality and Mask” equation as found
in Section 8.5.3.1 “Conditions for Matching Instruction Breakpoints”. A value of 1 indicates that the breakpoint will
match using address ranges using the equation below:

IB_match =
(!IBCnTCuse || (TC == IBCnTC)) &&
(! IBCnASIDuse || (ASID == IBASIDnASID)) &&
(((~IBCnhwarts || ~IBCnhwart) &&
 ((IBMnIBM | ~ (PC ^ IBAnIBA)) == ~0) ||
 ((IBCnhwarts && IBCnhwart) &&
 ((~IBCnexcl && (IBM <= PC <= IBA)) ||
 (IBCnexcl && (IBM > PC || PC > IBA)
)

Or if microMIPS is supported:

IB_range_match =
(!IBCnTCuse || (TC == IBCnTC)) &&
(! IBCnASIDuse || (ASID == IBASIDnASID)) &&
(((~IBCnhwarts || ~IBCnhwart) &&
 ((IBMnIBM | ~ (((PC[MSB:1] << 1) + ISAmode) ^ IBAnIBA)) == ~0) ||
 ((IBCnhwarts && IBCnhwart) &&
 (IBMnIBM[0] | ~ (ISAmode ^ IBAnIBA[0])) == ~0) &&
 ((~IBCnexcl && (IBM[MSB:1] <= PC[MSB:1] <= IBA[MSB:1])) ||
 (IBCnexcl && (IBM[MSB:1] > PC[MSB:1] || PC[MSB:1] > IBA[MSB:1])
)

Also note that addresses that overlap a boundary is considered for both exclusive and inclusive breakpoint matches.

8.5.3.2 Conditions for Matching Data Breakpoints

There are two methods for matching conditions, namely 1) by Equality and Mask or 2) by Address Range:

Equality and Mask

When a data breakpoint is enabled, that breakpoint is evaluated for every data transaction due to a load/store instruc-
tion executed in non-debug mode, including load/store for coprocessor, and transactions causing an address error on
data access. The breakpoint is not evaluated due to a PREF instruction or other transactions which are not part of
explicit load/store transactions in the execution flow, nor for addresses which are not the explicit load/store source or
destination address.

A breakpoint match depends on the transaction type (TYPE) as load or store, the address, and optionally the data
value of a transaction. The registers for each data breakpoint have the values and mask used in the compare, and the
equation that determines the match is shown below in C-like notation.

The overall match equation is the DB_match.

DB_match =
(((TYPE == load) && ! DBCnNoLB) ||

((TYPE == store) && ! DBCnNoSB)) &&
DB_addr_match && (DB_no_value_compare || DB_value_match)

 Debug Support in the M6200 Core

174 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

The match on the address part, DB_addr_match, depends on the virtual address of the transaction (ADDR) and the
accessed bytes (BYTELANE) where BYTELANE[0] is 1 only if the byte at bits [7:0] on the bus is accessed, and
BYTELANE[1] is 1 only if the byte at bits [15:8] is accessed, etc. The DB_addr_match is shown below.

DB_addr_match =
(<all 1’s> == (DBMnDBM | ~ (ADDR ^ DBAnDBA))) &&
(<all 0’s> != (~ BAI & BYTELANE))

The size of DBCnBAI and BYTELANE is 4 bits.

Data value compare is included in the match condition for the data breakpoint depending on the bytes (BYTELANE
as described above) accessed by the transaction, and the contents of breakpoint registers. The DB_no_value_compare
is shown below.

DB_no_value_compare =
(<all 1’s> == (DBCnBLM | DBCnBAI | ~ BYTELANE))

The size of DBCnBLM, DBCnBAI and BYTELANE is 4 bits.

In case a data value compare is required, DB_no_value_compare is false, then the data value from the data bus
(DATA) is compared and masked with the registers for the data breakpoint. The DBCIVM bit inverts the sense of the
match - if set, the value match term will be high if the data value is not the same as the data in the DBVn register. The
endianess is not considered in these match equations for value, as the compare uses the data bus value directly, thus
debug software is responsible for setup of the breakpoint corresponding with endianess.

DB_value_match =
DBCnIVM ^
(((DATA[7:0] == DBVnDBV[7:0]) || ! BYTELANE[0] || DBCnBLM[0] || DBCnBAI[0]) &&
 ((DATA[15:8] == DBVnDBV[15:8]) || ! BYTELANE[1] || DBCnBLM[1] || DBCnBAI[1]) &&
 ((DATA[23:16] == DBVnDBV[23:16]) || ! BYTELANE[2] || DBCnBLM[2] || DBCnBAI[2]) &&
 ((DATA[31:24] == DBVnDBV[31:24]) || ! BYTELANE[3] || DBCnBLM[3] || DBCnBAI[3]))

The match for a data breakpoint is always precise, since the match expression is fully evaluated at the time the
load/store instruction is executed. A true DB_match can thereby be indicated on the very same instruction causing the
DB_match to be true.

Address Range

Cores may optionally support the address range triggered data breakpoints. When this feature is configured, the fol-
lowing changes are made to the data breakpoint registers:

• DBAn : represents the upper limit of a address range boundary

• DBMn : represents the lower limit of the address range boundary

In addition, the following bits must be supported:

DBCn[10].hwarts: a preset value of 1 indicates that the address range triggered data breakpoint feature is supported
for this particular data breakpoint channel. This bit is read-only.

DBCn[9].exc : a value of 0 indicates that the breakpoint will match for addresses inclusive (within) the range defined
by DBMn and DBAn. A value of 1 indicates that the breakpoint will match for addresses exclusive (outside) to the
range defined by DBMn and DBAn. This bit is writeable.

8.5 Hardware Breakpoints

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 175

DBCn[8].hwart: a value of 0 indicates that the breakpoint will match using the “Equality and Mask” equation as found
in Section 8.5.3.2 “Conditions for Matching Data Breakpoints”. A value of 1 indicates that the breakpoint will match
using address ranges using the equation below:

DB_match =
(!DBCnTCuse || (TC == DBCnTC)) &&
(((TYPE == load) && ! DBCnNoLB) || ((TYPE == store) && ! DBCnNoSB)) &&
DB_addr_range_match && (DB_no_value_compare || DB_value_match)

DB_addr_range_match =
(! DBCnASIDuse || (ASID == DBASIDnASID)) &&
(((~DBCnhwarts || ~DBCnhwart) &&
 ((DBMnDBM | ~ (ADDR ^ DBAnDBA)) == ~0) ||
 ((DBCnhwarts && DBCnhwart) &&
 ((~DBCnexcl && (DBMn <= ADDR <= DBAn)) ||
 (DBCnexcl && (DBMn > ADDR || ADDR > DBAn)
)

When address range triggered data breakpoints is enabled, DBCn.BLM[3:0] must be set to 4'b1111 because value
matching is not supported with this feature. Addresses that overlap a boundary is considered for both exclusive and
inclusive breakpoint matches.

8.5.4 Debug Exceptions from Breakpoints

Instruction and data breakpoints may be set up to generate a debug exception when the match condition is true, as
described below.

8.5.4.1 Debug Exception by Instruction Breakpoint

If the breakpoint is enabled by BE bit in the IBCn register, then a debug instruction break exception occurs if the
IB_match equation is true. The corresponding BS[n] bit in the IBS register is set when the breakpoint generates the
debug exception.

The debug instruction break exception is always precise, so the DEPC register and DBD bit in the Debug register
point to the instruction that caused the IB_match equation to be true.

The instruction receiving the debug exception does not update any registers due to the instruction, nor does any load
or store by that instruction occur. Thus a debug exception from a data breakpoint can not occur for instructions
receiving a debug instruction break exception.

The debug handler usually returns to the instruction causing the debug instruction break exception, whereby the
instruction is executed. Debug software is responsible for disabling the breakpoint when returning to the instruction,
otherwise the debug instruction break exception reoccurs.

8.5.4.2 Debug Exception by Data Breakpoint

If the breakpoint is enabled by BE bit in the DBCn register, then a debug exception occurs when the DB_match con-
dition is true. The corresponding BS[n] bit in the DBS register is set when the breakpoint generates the debug excep-
tion.

A debug data break exception occurs when a data breakpoint indicates a match. In this case the DEPC register and
DBD bit in the Debug register points to the instruction that caused the DB_match equation to be true.

 Debug Support in the M6200 Core

176 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

The instruction causing the debug data break exception does not update any registers due to the instruction, and the
following applies to the load or store transaction causing the debug exception:

• A store transaction is not allowed to complete the store to the memory system.

• A load transaction with no data value compare, i.e., where the DB_no_value_compare is true for the match,
is not allowed to complete the load.

• A load transaction for a breakpoint with data value compare must occur from the memory system, since the value
is required in order to evaluate the breakpoint.

The result of this is that the load or store instruction causing the debug data break exception appears as not executed,
with the exception that a load from the memory system does occur for a breakpoint with data value compare, but the
register file is not updated by the load.

If both data breakpoints without and with data value compare would match the same transaction and generate a debug
exception, then the following rules apply with respect to updating the BS[n] bits.

• On both a load and store the BS[n] bits are required to be set for all matching breakpoints without a data value
compare.

• On a store the BS[n] bits are allowed but not required to be set for all matching breakpoints with a data value
compare, but either all or none of the BS[n] bits must be set for these breakpoints.

• On a load then none of the BS[n] bits for breakpoints with data value compare are allowed to be set, since the
load is not allowed to occur due to the debug exception from a breakpoint without a data value compare, and a
valid data value is therefore not returned.

Any BS[n] bit set prior to the match and debug exception are kept set, since BS[n] bits are only cleared by debug soft-
ware.

The debug handler usually returns to the instruction causing the debug data break exception, whereby the instruction
is re-executed. This re-execution may result in a repeated load from system memory, since the load may have
occurred previously in order to evaluate the breakpoint as described above. I/O devices with side effects on loads may
not be re-accessible without changing the system behavior. The Load Data Value register was introduced to capture
the value that was read and allow debug software to synthesize the load instruction without re-accessing memory.
Debug software is responsible for disabling breakpoints when returning to the instruction, otherwise the debug data
break exception will reoccur.

8.5.5 Breakpoint Used as Triggerpoint

Both instruction and data hardware breakpoints can be setup by software so that a matching breakpoint does not gen-
erate a debug exception, but only an indication through the BS[n] bit. The TE bit in the IBCn or DBCn register con-
trols if an instruction or data breakpoint is used as a so-called triggerpoint. The triggerpoints are, like breakpoints,
only compared for instructions executed in non-debug mode.

The BS[n] bit in the IBS or DBS register is set when the respective IB_match or DB_match bit is true.

The triggerpoint feature can be used to start and stop tracing.

8.5 Hardware Breakpoints

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 177

8.5.6 Instruction Breakpoint Registers

The registers for instruction breakpoints are described below. These registers have implementation information and
are used to set up the instruction breakpoints. All registers are in drseg, and the addresses are shown in Table 8.6.

An example of some of the registers; IBA0 is at offset 0x1100 and IBC2 is at offset 0x1318.

8.5.6.1 Instruction Breakpoint Status (IBS) Register (0x1000)

The Instruction Breakpoint Status (IBS) register holds implementation and status information about the instruction
breakpoints. This register is required only if instruction breakpoints are implemented.

Figure 8.8 IBS Register Format

Table 8.6 Addresses for Instruction Breakpoint Registers

Offset in drseg
Register

Mnemonic Register Name and Description

0x1000 IBS Instruction Breakpoint Status

0x1100 + n * 0x100 IBAn Instruction Breakpoint Address n

0x1108 + n * 0x100 IBMn Instruction Breakpoint Address Mask n

0x1110 + n * 0x100 IBASIDn Instruction Breakpoint ASID n

0x1118 + n * 0x100 IBCn Instruction Breakpoint Control n

0x1120 + n * 0x100 IBCCn Instruction Breakpoint Complex Control n

0x1128 + n * 0x100 IBPCn Instruction Breakpoint Pass Counter n

n is breakpoint number in range 0 to 5 (or 3 or 1, depending on the implemented hardware)

31 30 29 28 27 24 23 6 5 0

Res ASIDsup Res BCN Res BS

Table 8.7 IBS Register Field Descriptions

Fields

Description
Read/Wr

ite Reset StateName Bit(s)

Res 31 Must be written as zero; returns zero on read. R 0

ASIDsup 30 Indicates that ASID compare is supported in instruction
breakpoints.
0: No ASID compare.
1: ASID compare (IBASIDn register implemented).

R 0

Res 29:28 Must be written as zero; returns zero on read. R 0

BCN 27:24 Number of instruction breakpoints implemented. R 0, 2, 4, 6 or 8a

Res 23:8 Must be written as zero; returns zero on read. R 0

BS 7:0 Break status for breakpoint n is at BS[n], with n from 0
to 7b. The bit is set to 1 when the condition for the corre-
sponding breakpoint has matched and IBCnTE or
IBCnBE are set

R/W Undefined

 Debug Support in the M6200 Core

178 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

8.5.6.2 Instruction Breakpoint Address n (IBAn) Register (0x1100 + n * 0x100)

The Instruction Breakpoint Address n (IBAn) register has the address used in the condition for instruction breakpoint
n. This register is required only if instruction breakpoints are implemented.

Figure 8.9 IBAn Register Format

8.5.6.3 Instruction Breakpoint Address Mask n (IBMn) Register (0x1108 + n*0x100)

The Instruction Breakpoint Address Mask n (IBMn) register has the mask for the address compare used in the condi-
tion for instruction breakpoint n. A 1 indicates that the corresponding address bit will not be considered in the match.
A mask value of all 0’s would require an exact address match, while a mask value of all 1’s would match on any
address. This register is required only if instruction breakpoints are implemented.

Figure 8.10 IBMn Register Format

[a] Based on actual hardware implemented.
[b] In case of fewer than 8 Instruction breakpoints the upper bits become reserved.

31 0

IBA

Table 8.8 IBAn Register Field Descriptions

Fields

Description
Read/W

rite Reset StateName Bit(s)

IBA 31:0 Instruction breakpoint address for condition. R/W Undefined

31 0

IBM

Table 8.9 IBMn Register Field Descriptions

Fields

Description
Read/W

rite Reset StateName Bit(s)

IBM 31:0 Instruction breakpoint address mask for condition: R/W Undefined

Table 8.7 IBS Register Field Descriptions

Fields

Description
Read/Wr

ite Reset StateName Bit(s)

Encoding Meaning

0 Corresponding address bit not masked.
1 Corresponding address bit masked.

8.5 Hardware Breakpoints

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 179

8.5.6.4 Instruction Breakpoint ASID n (IBASIDn) Register (0x1110 + n*0x100)

For processors with a TLB-based MMU, this register is used to define an ASID value to be used in the match expres-
sion. On the M6200 processor, this register is reserved and reads as 0. This register is required only if instruction
breakpoints are implemented.

Figure 8.11 IBASIDn Register Format

8.5.6.5 Instruction Breakpoint Control n (IBCn) Register (0x1118 + n*0x100)

The Instruction Breakpoint Control n (IBCn) register controls the setup of instruction breakpoint n. This register is
required only if instruction breakpoints are implemented.

Figure 8.12 IBCn Register Format

31 8 7 0

Res ASID

Table 8.10 IBASIDn Register Field Descriptions

Fields

Description
Read/Wr

ite Reset StateName Bit(s)

Res 31:8 Must be written as zero; returns zero on read. R 0

ASID 7:0 Instruction breakpoint ASID value for a compare. R 0

31 24 23 22 7 6 5 4 3 2 1 0

Res ASIDuse Res hwarts excl hwart Res TE Res BE

Table 8.11 IBCn Register Field Descriptions

Fields

Description Read/Write Reset StateName Bits

Res 31:24 Must be written as zero; returns zero on read. R 0

ASIDuse 23 Use ASID value in compare for instruction breakpoint n: R 0

Res 22:7 Must be written as zero; returns zero on read. R 0

hwarts 6 A preset value of 1 indicates that the address- range trig-
gered instruction breakpoint feature is supported for this
particular instruction breakpoint channel.

R Preset

excl 5 A value of 0 indicates that the breakpoint will match for
addresses within (inclusive of) the range defined by
IBMn and IBAn. A value of 1 indicates that the break-
point will match for addresses outside (exclusive to) the
range defined by IBMn and IBAn.

R/W 0

Encoding Meaning

0 Don’t use ASID value in compare
1 Use ASID value in compare

 Debug Support in the M6200 Core

180 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

8.5.6.6 Instruction Breakpoint Complex Control n (IBCCn) Register (0x1120 + n*0x100)

The Instruction Breakpoint Complex Control n (IBCCn) register controls the complex break conditions for instruc-
tion breakpoint n. This register is required only if complex breakpoints are implemented and only for implemented
instruction breakpoints.

Figure 8.13 IBCCn Register Format

hwart 4 A value of 0 indicates that the breakpoint will match
using the “Equality and Mask” equation as found section
under 8.5.3.1 “Conditions for Matching Instruction
Breakpoints”.
A value of 1 indicates that the breakpoint will match
using the “Address Range” equation in section
8.5.3.1 “Conditions for Matching Instruction
Breakpoints”

R/W 0

Res 3 Must be written as zero; returns zero on read. R 0

TE 2 Use instruction breakpoint n as triggerpoint: R/W 0

Res 1 Must be written as zero; returns zero on read. R 0

BE 0 Use instruction breakpoint n as breakpoint: R/W 0

31 14 13 10 9 8 5 4 3 2 1 0

Res PrCnd CBE DBrkNum Q Res

Table 8.12 IBCCn Register Field Descriptions

Fields

Description Read/Write Reset StateName Bits

Res 31:14,
3:0

Must be written as zero; returns zero on read. R 0

PrCnd 13:12 Upper bits of priming condition for instruction breakpoint
n. The M6200 core only supports 4 priming conditions,
so the upper 2 bits are read as 0.

R 0

Table 8.11 IBCn Register Field Descriptions

Fields

Description Read/Write Reset StateName Bits

Encoding Meaning

0 Don’t use it as triggerpoint
1 Use it as triggerpoint

Encoding Meaning

0 Don’t use it as breakpoint
1 Use it as breakpoint

8.5 Hardware Breakpoints

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 181

8.5.6.7 Instruction Breakpoint Pass Counter n (IBPCn) Register (0x1128 + n*0x100)

The Instruction Breakpoint Pass Counter n (IBPCn) register controls the pass counter associated with instruction
breakpoint n. This register is required only if complex breakpoints are implemented and only for implemented
instruction breakpoints.

If complex breakpoints are implemented, there will be an 8b pass counter for each of the instruction breakpoints on
the M6200 core.

Figure 8.14 IBPCn Register Format

PrCnd 11:10 Priming condition for instruction breakpoint n.
00 - Bypass, no priming needed
Other - Varies depending on the break number; refer to
Table 8.14 for mapping.

R/W 0

CBE 9 Complex Break Enable. Enables this breakpoint for use
in a complex sequence as a priming condition for another
breakpoint, to start or stop the stopwatch timer, or as part
of a tuple breakpoint.

R/W 0

DBrkNum 8:5 Indicates which data breakpoint channel is used to qualify
this instruction breakpoint.

R 6I/2D Complex Breakpoint
Configuration:

IBCC0..2 - 0
IBCC3..6 - 1

8I/4D Complex Breakpoint
Configuration:

IBCC0..1 - 0
IBCC2..3 - 1
IBCC4..5 - 2
IBCC6..7 - 3

Q 4 Qualify this breakpoint based on the data breakpoint indi-
cated in DBrkNum.
0 - Not dependent on qualification
1 - Breakpoint must be qualified to be taken

R/W 0

31 8 7 0

0 PassCnt

Table 8.13 IBPCn Register Field Descriptions

Fields

Description Read/Write Reset StateName Bits

0 31:8 Ignored on write, returns zero on read. R 0

Table 8.12 IBCCn Register Field Descriptions (Continued)

Fields

Description Read/Write Reset StateName Bits

 Debug Support in the M6200 Core

182 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

8.5.7 Data Breakpoint Registers

The registers for data breakpoints are described below. These registers have implementation information and are used
the setup the data breakpoints. All registers are in drseg, and the addresses are shown in Table 8.14.

An example of some of the registers; DBM0 is at offset 0x2108 and DBV1 is at offset 0x2220.

PassCnt 7:0 Prevents a break/trigger action until the matching condi-
tions on breakpoint n have been seen this number of
times.
Each time the matching condition is seen, this value will
be decremented by 1.When the value reaches 0, subse-
quent matches will cause a break or trigger as requested
and the counter will stay at 0.
The break or trigger action is imprecise if the PassCnt
register was last written to a non-zero value. It will
remain imprecise until this register is written to 0 by soft-
ware.
The instruction pass counter should not be set on instruc-
tion breakpoints that are being used as part of a tuple
breakpoint.

R/W 0

Table 8.14 Addresses for Data Breakpoint Registers

Offset in drseg
Register

Mnemonic Register Name and Description

0x2000 DBS Data Breakpoint Status

0x2100 + 0x100 * n DBAn Data Breakpoint Address n

0x2108 + 0x100 * n DBMn Data Breakpoint Address Mask n

0x2110 + 0x100 * n DBASIDn Data Breakpoint ASID n

0x2118 + 0x100 * n DBCn Data Breakpoint Control n

0x2120 + 0x100 * n DBVn Data Breakpoint Value n

0x2128 + 0x100 * n DBCCn Data Breakpoint Complex Control n

0x2130 + 0x100 * n DBPCn Data Breakpoint Pass Counter n

0x2ff0 DVM Data Value Match Register

n is breakpoint number as 0, 1, 2 or 3 (or just 0, depending on the implemented hardware)

Table 8.13 IBPCn Register Field Descriptions

Fields

Description Read/Write Reset StateName Bits

8.5 Hardware Breakpoints

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 183

8.5.7.1 Data Breakpoint Status (DBS) Register (0x2000)

The Data Breakpoint Status (DBS) register holds implementation and status information about the data breakpoints.
This register is required only if data breakpoints are implemented.

Figure 8.15 DBS Register Format

8.5.7.2 Data Breakpoint Address n (DBAn) Register (0x2100 + 0x100 * n)

The Data Breakpoint Address n (DBAn) register has the address used in the condition for data breakpoint n. This reg-
ister is required only if data breakpoints are implemented.

Figure 8.16 DBAn Register Format

8.5.7.3 Data Breakpoint Address Mask n (DBMn) Register (0x2108 + 0x100 * n)

The Data Breakpoint Address Mask n (DBMn) register has the mask for the address compare used in the condition
for data breakpoint n. A 1 indicates that the corresponding address bit will not be considered in the match. A mask

31 30 29 28 27 24 23 2 1 0

Res ASIDsup Res BCN Res BS

Table 8.15 DBS Register Field Descriptions

Fields

Description
Read/Wr

ite Reset StateName Bit(s)

Res 31 Must be written as zero; returns zero on read. R 0

ASID 30 Indicates that ASID compares are supported in data
breakpoints.
0: Not supported
1: Supported

R 0

Res 29:28 Must be written as zero; returns zero on read. R 0

BCN 27:24 Number of data breakpoints implemented. R 4, 2, 1 or 0a

Res 23:4 Must be written as zero; returns zero on read. R 0

BS 3:0 Break status for breakpoint n is at BS[n], with n from 0
to 1b. The bit is set to 1 when the condition for the corre-
sponding breakpoint has matched.

R/W0 Undefined

[a] Based on actual hardware implemented.
[b] In case of only 1 data breakpoint bit 1 become reserved.

31 0

DBA

Table 8.16 DBAn Register Field Descriptions

Fields

Description
Read/W

rite Reset StateName Bit(s)

DBA 31:0 Data breakpoint address for condition. R/W Undefined

 Debug Support in the M6200 Core

184 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

value of all 0’s would require an exact address match, while a mask value of all 1’s would match on any address. This
register is required only if data breakpoints are implemented.

Figure 8.17 DBMn Register Format

8.5.7.4 Data Breakpoint ASID n (DBASIDn) Register (0x2110 + 0x100 * n)

 For processors with a TLB-based MMU, this register is used to define an ASID value to be used in the match expres-
sion. On the M6200 processor, this register is reserved and reads as 0. This register is required only if data break-
points are implemented.

Figure 8.18 DBASIDn Register Format

8.5.7.5 Data Breakpoint Control n (DBCn) Register (0x2118 + 0x100 * n)

The Data Breakpoint Control n (DBCn) register controls the setup of data breakpoint n. This register is required only if
data breakpoints are implemented.

Figure 8.19 DBCn Register Format

31 0

DBM

Table 8.17 DBMn Register Field Descriptions

Fields

Description
Read/W

rite Reset StateName Bit(s)

DBM 31:0 Data breakpoint address mask for condition:
0: Corresponding address bit not masked
1: Corresponding address bit masked

R/W Undefined

31 8 7 0

Res ASID

Table 8.18 DBASIDn Register Field Descriptions

Fields

Description
Read/Wr

ite Reset StateName Bit(s)

Res 31:8 Must be written as zero; returns zero on read. R 0

ASID 7:0 Data breakpoint ASID value for compares. R 0

31 24 23 22 18 17 14 13 12 11 10 9 8 7 4 3 2 1 0

Re ASIDuse Res BAI NoSB NoLB Res hwarts excl hwart BLM Res TE IVM BE

8.5 Hardware Breakpoints

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 185

Table 8.19 DBCn Register Field Descriptions

Fields

Description Read/Write Reset StateName Bits

Res 31:24 Must be written as zero; returns zero on reads. R 0

ASIDuse 23 Use ASID value in compare for data breakpoint n: R 0

Res 22:18 Must be written as zero; returns zero on reads. R 0

BAI 17:14 Byte access ignore controls ignore of access to a specific
byte. BAI[0] ignores access to byte at bits [7:0] of the
data bus, BAI[1] ignores access to byte at bits [15:8], etc.

R/W Undefined

NoSB 13 Controls if condition for data breakpoint is not fulfilled
on a store transaction:

R/W Undefined

NoLB 12 Controls if condition for data breakpoint is not fulfilled
on a load transaction:

R/W Undefined

Res 11 Must be written as zero; returns zero on reads. R 0

hwarts 10 A preset value of 1 indicates that the address range trig-
gered data breakpoint feature is supported for this par-
ticular data breakpoint channel.

R Preset

excl 9 A value of 0 indicates that the breakpoint will match for
addresses inclusive (within) the range defined by DBMn
and DBAn. A value of 1 indicates that the breakpoint
will match for addresses exclusive (outside) of the
range defined by DBMn and DBAn.

R/W 0

Encoding Meaning

0 Don’t use ASID value in compare
1 Use ASID value in compare

Encoding Meaning

0 Condition depends on access to corre-
sponding byte

1 Access for corresponding byte is
ignored

Encoding Meaning

0 Condition may be fulfilled on store
transaction

1 Condition is never fulfilled on store
transaction

Encoding Meaning

0 Condition may be fulfilled on load
transaction

1 Condition is never fulfilled on load
transaction

 Debug Support in the M6200 Core

186 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

8.5.7.6 Data Breakpoint Value n (DBVn) Register (0x2120 + 0x100 * n)

The Data Breakpoint Value n (DBVn) register has the value used in the condition for data breakpoint n. This register
is required only if data breakpoints are implemented.

Figure 8.20 DBVn Register Format

hwart 8 A value of 0 indicates that the breakpoint will match
using the “Equality and Mask” equation as found sec-
tion under 8.5.3.2 “Conditions for Matching Data
Breakpoints”.
A value of 1 indicates that the breakpoint will match
using the “Address Range”equation in section
8.5.3.2 “Conditions for Matching Data Breakpoints”

R/W 0

BLM 7:4 Byte lane mask for value compare on data breakpoint.
BLM[0] masks byte at bits [7:0] of the data bus, BLM[1]
masks byte at bits [15:8], etc.:

R/W Undefined

Res 3 Must be written as zero; returns zero on reads. R 0

TE 2 Use data breakpoint n as triggerpoint: R/W 0

IVM 1 Invert Value Match. When set, the data value compare
will be inverted. i.e., a break or trigger will be taken if
the value does not match the specified value

R/W 0

BE 0 Use data breakpoint n as breakpoint: R/W 0

31 0

DBV

Table 8.20 DBVn Register Field Descriptions

Fields

Description
Read/Wr

ite Reset StateName Bit(s)

DBV 31:0 Data breakpoint value for condition. R/W Undefined

Table 8.19 DBCn Register Field Descriptions (Continued)

Fields

Description Read/Write Reset StateName Bits

Encoding Meaning

0 Compare corresponding byte lane
1 Mask corresponding byte lane

Encoding Meaning

0 Don’t use it as triggerpoint
1 Use it as triggerpoint

Encoding Meaning

0 Don’t use it as breakpoint
1 Use it as breakpoint

8.5 Hardware Breakpoints

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 187

8.5.7.7 Data Breakpoint Complex Control n (DBCCn) Register (0x2128 + n*0x100)

The Data Breakpoint Complex Control n (DBCCn) register controls the complex break conditions for data breakpoint
n. This register is required only if complex breakpoints are implemented and only for implemented data breakpoints.

Figure 8.21 DBCCn Register Format

31 20 19 16 15 14 13 10 9 8 5 4 3 2 1 0

Res TIBrkNum TUP Res PrCnd CBE DBrkNum Q Res

Table 8.21 DBCCn Register Field Descriptions

Fields

Description Read/Write Reset StateName Bits

Res 31:20,
14, 3:0

Must be written as zero; returns zero on read. R 0

TIBrkNum 19:16 Tuple Instruction Break Number. Indicates which instruc-
tion breakpoint will be paired with this data breakpoint to
form a tuple breakpoint.

R 6I/2D Complex Breakpoint
Configuration:

DBCC0 - 0
DBCC1 - 3

8I/4D Complex Breakpoint
Configuration:

DBCC0 - 0
DBCC1 - 2
DBCC2 - 4
DBCC3 - 6

TUP 15 Tuple Enable. Qualify this data breakpoint with a match
on the TIBrkNum instruction breakpoint on the same
instruction.

R/W 0

PrCnd 13:12 Upper bits of priming condition for D breakpoint n.
M6200 only supports 4 priming conditions so the upper 2
bits are read only as 0.

R 0

PrCnd 11:10 Priming condition for D Breakpoint n.
00 - Bypass, no priming needed
Other - Varies depending on the break number, refer to
Table 8.24 for mapping.

R/W 0

CBE 9 Complex Break Enable - enables this breakpoint for use
as a priming or qualifying condition for another break-
point.

R/W 0

DQBrkNum 8:5 Indicates which data breakpoint channel is used to qualify
this data breakpoint.
Data qualification of data breakpoints is not supported on
the M6200 core and this field will read as 0 and cannot be
written.

R 0

DQ 4 Qualify this breakpoint based on the data breakpoint indi-
cated in DBrkNum.
Data qualification of data breakpoints is not supported on
the M6200 core and this field will read as 0 and cannot be
written.

R 0

 Debug Support in the M6200 Core

188 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

8.5.7.8 Data Breakpoint Pass Counter n (DBPCn) Register (0x2130 + n*0x100)

The Data Breakpoint Pass Counter n (DBPCn) register controls the pass counter associated with data breakpoint n.
This register is required only if complex breakpoints are implemented and only for implemented data breakpoints.

If complex breakpoints are implemented, there will be an 16b pass counter for each of the data breakpoints on the
M6200 core.

Figure 8.22 DBPCn Register Format

8.5.7.9 Data Value Match (DVM) Register (0x2ffo)

The Data Value Match (DVM) register captures the data value of a load that takes a precise data value breakpoint.
This allows debug software to synthesize the load instruction without re-executing it in case it is to a system register
that has destructive reads. This register is required only if data breakpoints are implemented.

Figure 8.23 DVM Register Format

31 16 15 0

0 PassCnt

Table 8.22 DBPCn Register Field Descriptions

Fields

Description Read/Write Reset StateName Bits

0 31:16 Ignored on write, returns zero on read. R 0

PassCnt 15:0 Prevents a break/trigger action until the matching condi-
tions on data breakpoint n have been seen this number of
times.
Each time the matching condition is seen, this value will
be decremented by 1. When the value reaches 0, subse-
quent matches will cause a break or trigger as requested
and the counter will stay at 0.
The break or trigger action is imprecise if the PassCnt
register was last written to a non-zero value. It will
remain imprecise until this register is written to 0 by soft-
ware.

R/W 0

31 0

LDV

Table 8.23 DVM Register Field Descriptions

Fields

Description
Read/W

rite Reset StateName Bit(s)

LDV 31:0 Load data value for the last precise load data value
breakpoint taken.

R Undefined

8.5 Hardware Breakpoints

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 189

8.5.8 Complex Breakpoint Registers

The registers for complex breakpoints are described Table 8.24. These registers have implementation information and
are used to setup the data breakpoints. All registers are in drseg.

8.5.8.1 Complex Break and Trigger Control (CBTC) Register (0x8000)

The CBTC register contains configuration bits that indicate which features of complex break are implemented as well
as a control bit for the stopwatch timer. On the M6200 core, if complex break is implemented, all of the separate fea-
tures will be present. This register is required only if complex breakpoints are implemented.

Figure 8.24 CBTC Register Format

Table 8.24 Addresses for Complex Breakpoint Registers

Offset in drseg
Register

Mnemonic Register Name and Description

0x1120 + 0x100 * n IBCCn Instruction Breakpoint Complex Control n - described above
with instruction breakpoint registers

0x1128 + 0x100 * n IBPCn Instruction Breakpoint Pass Counter n - described above with
instruction breakpoint registers

0x2128 + 0x100 * n DBCCn Data Breakpoint Complex Control n - described above with
data breakpoint registers

0x2130 + 0x100 * n DBPCn Data Breakpoint Pass Counter n - described above with data
breakpoint registers

0x8000 CBTControl Complex Break and Triggerpoint Control - indicates which
of the complex breakpoint features are implemented

0x8300 + 0x20 * n PrCndAIn Prime Condition Register A for Instruction breakpoint n

0x84e0 + 0x20 * n PrCndADn Prime Condition Register A for Data breakpoint n

0x8900 STCtl Stopwatch Timer Control

0x8908 STCnt Stopwatch Timer Count

n is breakpoint number from 0 to 7 (range dependent on implemented hardware)

31 9 8 7 5 4 3 2 1 0

Res STMode Res STP PP DQP TP PCP

Table 8.25 CBTC Register Field Descriptions

Fields

Description Read/Write Reset StateName Bits

Res 31:9, 7:5 Reserved R 0

STMode 8 Stopwatch Timer Mode: controls whether the stopwatch
timer is free-running or controlled by triggerpoints:
0 - free-running
1 - started and stopped by instruction triggers

R/W 1

 Debug Support in the M6200 Core

190 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

8.5.8.2 Priming Condition A (PrCndAI/Dn) Registers

The Prime Condition registers hold implementation specific information about which triggerpoints are used for the
priming conditions for each breakpoint register. On the M6200 core, these connections are predetermined and these
registers are read-only. This register is required only if complex breakpoints are implemented.

The architecture allows for up to 16 priming conditions to be specified and there can be up to 4 priming condition
registers per breakpoint (A/B/C/D). The M6200 core only allows for 4 priming conditions and thus only implements
the PrCndA registers. The general description is shown in Table 8.26. The actual priming conditions for each of the
breakpoints are shown in Table 8.27.

Figure 8.25 PrCndA Register Format

STP 4 Stopwatch Timer Present - indicates whether stopwatch
timer is implemented.

R 1

PP 3 Priming Present - indicates whether primed breakpoints
are supported

R 1

DQP 2 Data Qualify Present - indicates whether data qualified
breakpoints are supported.

R 1

TP 1 Tuple Present - indicates whether any tuple breakpoints
are implemented.

R 1

PCP 0 Pass Counters Present - indicates whether any break-
points have pass counters associated with them.

R 1

31 24 23 16 15 8 7 0

Cond3 Cond2 Cond1 Cond0

Table 8.25 CBTC Register Field Descriptions (Continued)

Fields

Description Read/Write Reset StateName Bits

8.5 Hardware Breakpoints

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 191

Table 8.28 Priming Conditions and Register Values for 8I/4D Configuration

Table 8.26 PrCndA Register Field Descriptions

Fields

Description
Read/Wr

ite Reset StateName Bit(s)

CondN 31:24
23:16
15:8
7:0

Specifies which triggerpoint is connected to priming
condition 3, 2, 1, or 0a for the current breakpoint.

R Preset

31:30
23:22
15:14
7:6

Reserved R 0

29:28
21:20
13:12
5:4

Trigger type
00 - Special/Bypass
01 - Instruction
10 - Data
11 - Reserved

R Preset

27:24
19:16
11:8
3:0

Break Number, 0-14 R Preset

[a] Condition 0 is always Bypass and will read as 8 b0

Table 8.27 Priming Conditions and Register Values for 6I/2D Configuration

Break Cond0 Cond1 Cond2 Cond3 PrCndA Value
drseg
offset

Inst0 Bypass Data0 Inst1 Inst2 0x1211_2000 0x8300

Inst1 Bypass Data0 Inst0 Inst2 0x1210_2000 0x8320

Inst2 Bypass Data0 Inst0 Inst1 0x1110_2000 0x8340

Inst3 Bypass Data1 Inst4 Inst5 0x1514_2100 0x8360

Inst4 Bypass Data1 Inst3 Inst5 0x1513_2100 0x8380

Inst5 Bypass Data1 Inst3 Inst4 0x1413_2100 0x83a0

Data0 Bypass Inst0 Inst1 Inst2 0x1211_1000 0x84e0

Data1 Bypass Inst3 Inst4 Inst5 0x1514_1300 0x8500

Break Cond0 Cond1 Cond2 Cond3 PrCndA Value
drseg
offset

Inst0 Bypass Data0 Inst1 Inst2 0x1211_2000 0x8300

Inst1 Bypass Data0 Inst0 Inst2 0x1210_2000 0x8320

Inst2 Bypass Data1 Inst3 Inst4 0x1413_2100 0x8340

Inst3 Bypass Data1 Inst2 Inst4 0x1412_2100 0x8360

Inst4 Bypass Data2 Inst5 Inst6 0x1615_2200 0x8380

 Debug Support in the M6200 Core

192 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

8.5.8.3 Stopwatch Timer Control (STCtl) Register (0x8900)

The Stopwatch Timer Control (STCtl) register gives configuration information about how the stopwatch timer register
is controlled. On the M6200 core, the break channels that control the stopwatch timer are fixed and this register is
read-only. This register is required only if stopwatch timer is implemented.

Figure 8.26 STCtl Register Format

Inst5 Bypass Data2 Inst4 Inst6 0x1614_2200 0x83a0

Inst6 Bypass Data3 Inst7 Inst0 0x1017_2300 0x83c0

Inst7 Bypass Data3 Inst6 Inst0 0x1016_2300 0x83e0

Data0 Bypass Inst0 Inst1 Data1 0x2111_1000 0x84e0

Data1 Bypass Inst2 Inst3 Data2 0x2213_1200 0x8500

Data2 Bypass Inst4 Inst5 Data3 0x2315_1400 0x8520

Data3 Bypass Inst6 Inst7 Data0 0x2017_1600 0x8540

31 18 17 14 13 10 9 8 5 4 1 0

Res StopChan1 StartChan1 En1 StopChan0 StartChan0 En0

Table 8.29 STCtl Register Field Descriptions

Fields

Description
Read/Wr

ite Reset StateName Bit(s)

Res 31:18 Must be written as zero; returns zero on read. R 0

StopChan1 17:14 Indicates the instruction breakpoint channel that will
stop the counter if the timer is under pair1 breakpoint
control

R 0

StartChan1 13:10 Indicates the instruction breakpoint channel that will
start the counter if the timer is under pair1 breakpoint
control

R 0

En1 9 Enables the second pair (pair1) of breakpoint registers to
control the timer when under breakpoint control. If the
stopwatch timer is configured to be under breakpoint
control (by setting CBTControlSTM)and this bit is set,
the breakpoints indicated in the StartChan1 and
StopChan1 fields will control the timer.

The M6200 core only supports 1 pair of stopwatch con-
trol breakpoints so this field is not writable and will read
as 0.

R 0

StopChan0 8:5 Indicates the instruction breakpoint channel that will
stop the counter if the timer is under pair0 breakpoint
control.

R 0x4

StartChan0 4:1 Indicates the instruction breakpoint channel that will
start the counter if the timer is under pair0 breakpoint
control.

R 0x1

Break Cond0 Cond1 Cond2 Cond3 PrCndA Value
drseg
offset

8.6 Complex Breakpoint Usage

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 193

8.5.8.4 Stopwatch Timer Count (STCnt) Register (0x8908)

The Stopwatch Timer Count (STCnt) register is the count value for the stopwatch timer. This register is required only
if the stopwatch timer is implemented.

Figure 8.27 STCnt Register Format

8.6 Complex Breakpoint Usage

8.6.1 Checking for Presence of Complex Break Support

Software should verify that the complex breakpoint hardware is implemented prior to attempting to use it. The full
sequence of steps is shown below for general use. Spots where the M6200 core has restricted behavior are noted.

1. Read the Config1EP bit to check for the presence of Debug logic. Debug logic is always present on the M6200
core.

2. Read the DebugNoDCR bit to check for the presence of the Debug Control Register (DCR). The DCR is always be
implemented on the M6200 core.

En0 0 Enables the first pair (pair0) of breakpoint registers to
control the timer when under breakpoint control. If the
stopwatch timer is configured to be under breakpoint
control (by setting CBTControlSTM)and this bit is set,
the breakpoints indicated in the StartChan0 and
StopChan0 fields will control the timer.

The M6200 core only supports 1 pair of stopwatch con-
trol breakpoints so this field is not writable and will read
as 1.

R 1

31 0

Count

Table 8.30 STCtl Register Field Descriptions

Fields

Description
Read/Wr

ite Reset StateName Bit(s)

Count 31:0 Current counter value R/W 0

Table 8.29 STCtl Register Field Descriptions

Fields

Description
Read/Wr

ite Reset StateName Bit(s)

 Debug Support in the M6200 Core

194 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

3. Read the DCRCBT bit to check for the presence of any complex break and trigger features.

4. Read the CBT Control register to check for the presence of each individual feature. If the M6200 core imple-
ments any complex break and trigger features, it will implement all of them.

5. If Pass Counters are implemented, they may not be implemented for all break channels and may have different
counter sizes. To determine the size and presence of each pass counter, software can write a value of -1 to each of
the IBPCn and DBPCn registers and read back the values to note the bits that were set by the write. If the M6200
core implements pass counters, it will implement an 8-bit counter for each instruction breakpoint and a 16-bit
counter for each data breakpoint.

6. If tuples are implemented, they may only be supported on a subset of the data breakpoint channels. This can be
checked by seeing if the DBCCnTUP bit can be set to 1. Additionally, some cores may support dynamically
changing which instruction breakpoint is associated with a given data breakpoint. This can be checked by
attempting to write the DBCCnTIBrkNum field. If the M6200 core implements tuple support, it will support it for
all data breakpoint channels and the instruction breakpoint association will be fixed.

7. If Priming Conditions are supported, a core may only support a subset of the possible priming condition values.
This can be checked by 4’hf to the xBCCnPrCnd field. If only 1 or 2 bits can be written, the available priming
conditions will be described in the PrCndA registers. If 3 bits are writable, PrCndA and PrCndB will describe the
conditions, and if all 4 bits are writable, the PrCndA, PrCndB, PrCndC, and PrCndD registers will all exist. Some
cores may also support changing the priming conditions and this can be checked by attempting to write to the
PrCnd registers. If the M6200 core supports priming conditions, it will support 4 statically mapped priming con-
ditions per breakpoint which will be described in the PrCndA registers.

8. If support for qualified breakpoints is indicated, it may only be supported for some of the breakpoints. Addition-
ally, the data breakpoint used for the qualification may be configurable. Software can check this by writing to the
xBCCnPrCnd fields. If the M6200 core support qualified breakpoints, it will only support it on instruction break-
points and the data break used for qualification will be fixed for each instruction breakpoint.

9. If the stopwatch timer is implemented, either one or two pairs of instruction breakpoints may be available for
controlling it and it may be possible to dynamically select which instruction breakpoints are used. This can be
tested by writing to the STCtl register.

8.6.2 General Complex Break Behavior

There is some general complex break behavior that is common to all complex breakpoints. This behavior is described
below:

• Resets to a disabled state - when the core is reset, the complex break functionality will be disabled and debug
software that is not aware of complex break should continue to function normally.

• Complex break state is not updated on exceptional instructions

• Complex breakpoints are evaluated at the end of the pipeline and complex breakpoint exceptions are taken
imprecisely on the following instruction.

• There is no hazard between enabling and enabled events. When an instruction causes an enabling event, the fol-
lowing instruction sees the enabled state and reacts accordingly.

8.6 Complex Breakpoint Usage

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 195

8.6.3 Usage of Pass Counters

Pass counters specify that the breakpoint conditions must match N times before the breakpoint action will be enabled.

• Controlled by writing to the per-breakpoint pass counter register

• Resets to 0

• Writing to a non-zero value enables the pass counter. When enabled, each time the breakpoint conditions match,
the counter will be decremented by 1. After the counter value reaches 0, the breakpoint action (breakpoint excep-
tion, trigger, or complex break enable) will occur on any subsequent matches and the counter will not decrement
further. The action does not occur on the match that causes the 1->0 counter decrement.

• If the breakpoint also has priming conditions and/or data qualified specified, the pass counter will only decre-
ment when the priming and/or qualified conditions have been met.

• If a data breakpoint is configured to be a tuple breakpoint, the data pass counter will only decrement on instruc-
tions where both the instruction and data break conditions match. The pass counter for the instruction break
involved in a tuple should not be enabled if the tuple is enabled.

• When a pass counter has been enabled, it will be treated as enabled until the pass counter is explicitly written to
0. Namely, breakpoint exceptions will continue to be taken imprecisely until the pass counter is disabled by writ-
ing to 0.

• The counter register will be updated as matches are detected. The current count value can be read from the regis-
ter while operating in debug mode. Note that this behavior is architecturally recommended, but not required.

8.6.4 Usage of Tuple Breakpoints

A tuple breakpoint is the logical AND of a data breakpoint and an instruction breakpoint. Tuple breakpoints are spec-
ified as a condition on a data breakpoint. If the DBCCnTUP bit is set, the data breakpoint will not match unless there
the corresponding instruction breakpoint conditions are also met.

• Uses the data breakpoint resources to specify the break action, break status, pass counters, and priming condi-
tions.

• The instruction breakpoint involved in the tuple should be configured as follows:

• IBCCnCBE = 1

• IBCCnPrCnd = IBCCnDQ = IBCnTE = IBCnBE = IBPCn = 0

8.6.5 Usage of Priming Conditions

Priming conditions provide a way to have one breakpoint enabled by another one. Prior to the priming condition
being satisfied, any breakpoint matches are ignored.

• Priming condition resets to bypass which specifies that no priming is required

 Debug Support in the M6200 Core

196 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

• 3 other priming conditions are available for each breakpoint. These condition vary from breakpoint to breakpoint
(since it makes no sense for a breakpoint to prime itself). The conditions for each of the breakpoints are listed in
Table 8.27.

• The priming breakpoint must have xBCnTE or xBCCnCBE set.

• When the priming condition has been seen, the primed breakpoint will remain primed until its xBCCn register is
written

• The primed state is stored with the breakpoint being primed and not with the breakpoint that is doing the priming.

• Each Prime condition is the comparator output after it has been qualified by its own Prime condition, data quali-
fication, and pass counter. Using this, several stages of priming are possible (e.g. data cycle D followed by
instruction A followed by instruction B N times followed by instruction C).

8.6.6 Usage of Data Qualified Breakpoints

Each of the instruction breakpoints can be set to be data qualified. In qualified mode, a breakpoint will recognize its
conditions only after the specified data breakpoint matches both address and data. If the data breakpoint matches
address, but has a mismatch on the data value, the instruction breakpoint will be unqualified and will not match until
a subsequent qualifying match.

This feature can be used similarly to the ASID qualification that is available on cores with TLBs. If an RTOS loads a
process ID for the current process, that load can be used as the qualifying breakpoint. When a matching process ID is
loaded (entering the desired RTOS process), qualified instruction breakpoints will be enabled. When a different pro-
cess ID is loaded (leaving the desired RTOS process), the qualified instruction breakpoints are disabled. Alterna-
tively, with the InvertValueMatch feature of the data breakpoint, the instruction breakpoints could be enabled on any
process ID other than the specified one.

• The qualifying data break must have DBCnTE or DBCCnCBE set.

• The qualifying data break should have data comparison enabled (via settings of DBCnBLM and DBCnBAI)

• The qualifying data break should not have pass counters, priming conditions, or tuples enabled.

• The qualifying data access can be either a load or store, depending on the settings of DBCnNoSB and DBCnNoLB

• The Qualified/Unqualified state is stored with the instruction breakpoint that is being qualified. Writing its
IBCCn register will disqualify that breakpoint.

• Qualified instruction breakpoint can also have priming conditions and/or pass counters enabled. The pass counter
will only decrement when the priming and qualifying conditions have been met. The instruction breakpoint
action (break, trigger, or complex enable) will only occur when all priming, qualifying, and pass counter condi-
tions have been met.

• Qualified instruction breakpoint can be used to prime another breakpoint

8.6.7 Usage of Stopwatch Timers

The stopwatch timer is a drseg memory mapped count register. It can be configured to be free running or controlled
by instruction breakpoints. This could be used to measure the amount of time that is spent in a particular function by
starting the counter upon function entry and stopping it upon exit.

8.7 Secure Debug

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 197

• Count value is reset to 0

• Reset state has counter stopped and under breakpoint control so that the counter is not running when the core is
not being debugged.

• Bit in CBT Control register controls whether the counter is free-running or breakpoint controlled.

• Counter does not count in debug mode

• When breakpoint controlled, the involved instruction breakpoints must have IBCnTE or IBCCnCBE set in order to
start or stop the timer.

• It can be asserted by a Debug probe.

8.7 Secure Debug

When EJ_DisableProbeDebug is asserted, the following conditions exist:

• IMPCODE, IDCODE: operate as usual

• OCI CONTROL Register (OCR): BOOTMODE fixed at NORMAL, DisableProbeDebug=1, ProbTrap=0, Pro-
bEn=0, PerRst=0, PrRst=0, DbgBrk =0 (except if enabled by the Override bit (DCR[DbgBrk_Override])

• DATA: Since ProbEn=0, the processor will never read/write DMSEG, so any read/write of DATA from the probe
will hang the APB.

• DRSEG_DATA: Disabled; a read or write from DRSEG_DATA will never be satisfied and will hang the APB.

• FDC: Operates normally.

When EJ_DisablePCSamDebug is asserted, the following conditions exist:

• PCSAMPLE: Disabled. PCSAMPLE1/2 read value is unpredictable as long as NEW is fixed at 0.

8.8 Performance Counters

Performance counters are used to accumulate occurrences of internal predefined events/cycles/conditions for pro-
gram analysis, debug, or profiling. A few examples of event types are clock cycles, instructions executed, specific
instruction types executed, loads, stores, exceptions, and cycles while the CPU is stalled. There are two, 32-bit coun-
ters. Each can count one of the 64 internal predefined events, or one of two externally controlled events selected by a
corresponding control register. A counter overflow can be programmed to generate an interrupt, where the interrupt
handler software can maintain larger total counts.

8.9 iFlowtrace™

The M6200 core has an option for a simple trace mechanism called iFlowtrace. iFlowtrace is a light-weight instruc-
tion-only tracing scheme that is sufficient to reconstruct the execution flow in the core, and it can only be controlled
by debug software. This tracing scheme has been kept very simple to minimize the impact on die size. iFlowtrace
memory can be configured as both on-chip and off-chip.

iFlowtrace also offers special-event trace modes when normal tracing is disabled, namely:

 Debug Support in the M6200 Core

198 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

• Function Call/Return and Exception Tracing mode to trace the PC value of function calls and returns and/or
exceptions and returns.

• Breakpoint Match mode traces the breakpoint ID of a matching breakpoint and, for data breakpoints, the PC
value of the instruction that caused it.

• Filtered Data Tracing mode traces the ID of a matching data breakpoint, the load or store data value, access
type and memory access size, and the low-order address bits of the memory access, which is useful when the
data breakpoint is set up to match a range of addresses.

• User Trace Messages. The user can instrument their code to add their own 32-bit value messages into the
trace by writing to the two Cop0 UTM registers.

• Delta Cycle mode works in combination with the above trace modes to provide a timestamp between stored
events. It reports the number of cycles that have elapsed since the last message was generated and put into
the trace.

Two new iFlowtrace features:

IFCTL2[UTM_En] (bit 9). This enables (1) UTMs to be output to the trace port or disabled (0).

IFCTL2[DeltaCycle_Divide] (bits 11:10). This sets a divider rate between the CPU clock and delta cycle counter
clock tick; the counter value is what is recorded in the trace when DeltaCycle mode is enabled.

Tracing is disabled if the processor enters Debug Mode. This is true for both Normal Trace Mode as well as Special
Trace Mode.

The presence of the iFlowtrace mechanism is indicated by the CP0 Config3ITL register bit.

For more information, refer to the MIPS® iFlowtrace™ Architecture Specification [7].

8.9.1 A Simple Instruction-Only Tracing Scheme

A trace methodology can often be mostly defined by its inputs and outputs. Hence this basic scheme is described by
the inputs to the core tracing logic and by the trace output format from the core. We assume here that the execution
flow of the program is traced at the end of the execution path in the core similar to PDtrace.

8.9.1.1 Trace Inputs

1. In_TraceOn: When on, legal trace words are coming from the core and at the point when it is turned on, that is for
the first traced instruction, a full PC value is output. When off, it cannot be assumed that legal trace words are
available at the core interface.

2. In_Stall: This says, stall the processor to avoid buffer overflow that can lose trace information. When off, a buffer
overflow will simply throw away trace data and start over again. When on, the processor is signalled from the
tracing logic to stall until the buffer is sufficiently drained and then the pipeline is restarted.

8.9.1.2 Normal Trace Mode Outputs

1. Stall cycles in the pipe are ignored by the tracing logic and are not traced. This is indicated by the signal
Out_Valid that is turned off when no valid instruction is being traced. When Out_Valid is asserted, instructions
are traced out as described in the rest of this section. The traced instruction PC is a virtual address.

8.9 iFlowtrace™

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 199

2. In the output format, every sequentially executed instruction is traced as 1’b0.

3. Every instruction that is not sequential to the previous one is traced as either a 10 or an 11 (read this as a serial
bitstream from left to right). This implies that the target instruction of a branch or jump is traced this way, not the
actual branch or jump instruction (this is similar to PDtrace):

4. A 10 instruction implies a taken branch for a conditional branch instruction whose condition is unpredictable
statically, but whose branch target can be computed statically and hence the new PC does not need to be traced
out. Note that if this branch was not taken, it would have been indicated by a 0 bit, that is sequential flow.

5. A 11 instruction implies a taken branch for an indirect jump-like instruction whose branch target could not be
computed statically and hence the taken branch address is now given in the trace. This includes, for example,
instructions like jr, jalr, and interrupts:

• 11 00 - followed by 8 bits of 1-bit shifted offset from the last PC. The bit assignments of this format on the
bus between the core tracing logic and the ITCB is:

[3:0] = 4’b0011
[11:4] = PCdelta[8:1]

• 11 01 - followed by 16 bits of 1-bit shifted offset from the last PC. The bit assignments of this format on the
bus between the core tracing logic and the ITCB is:

[3:0] = 4’b1011
[19:4] = PCdelta[16:1]

• 11 10 - followed by 31 of the most significant bits of the PC value, followed by a bit (NCC) that indicates no
code compression. Note that for a MIPS32 or MIPS64 instruction, NCC=1, and for microMIPS instruction
NCC=0. This trace record will appear at all transition points between MIPS32/MIPS64 and microMIPS
instruction execution.
This form is also a special case of the 11 format and it is used when the instruction is not a branch or jump,
but nevertheless the full PC value needs to be reconstructed. This is used for synchronization purposes, sim-
ilar to the Sync in PDtrace. In iFlowtrace rev 2.0 onwards, the sync period is user-defined, and is counted
down and when an internal counter runs through all the values, this format is used. The bit assignments of
this format on the bus between the core tracing logic and the ITCB is:

[3:0] = 4’b0111
[34:4] = PC[31:1]
[35] = NCC

• 11 11 - Used to indicate trace resumption after a discontinuity occurred. The next format is a 1110 that sends
a full PC value. A discontinuity might happen due to various reasons, for example, an internal buffer over-
flow, and at trace-on/trace-off trigger action.

8.9.2 Special Trace Modes

iFlowtrace 2.0 adds special trace modes which can only be active when the normal tracing mode is disabled. Software
can determine which modes are supported by attempting to write the enable bits in the IFCTL register. Software can
check the Illegal bit in the IFCTL register—if an unsupported combination of modes is requested, the bit will be set
and the trace contents will be unpredictable. The special trace modes are described below.

 Debug Support in the M6200 Core

200 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

8.9.2.1 Mode Descriptions

Delta Cycle Mode

This mode is specified in combination with the other special trace modes. It is enabled via the CYC bit in the Con-
trol/Status Register. When delta cycle reporting is enabled, each trace message will include a 10b delta cycle value
which reports the number of cycles that have elapsed since the last message was generated. A value of 0 indicates that
the two messages were generated in the same cycle. A value of 1 indicates that they were generated in consecutive
cycles. If 1023 cycles elapse without an event being traced, a counter rollover message is generated.

Note: If the processor clocks stop due to execution of the WAIT instruction, the delta cycle counter will also stop and
will report ‘active’ cycles between events rather than ‘total’ cycles.

Breakpoint Match Mode

This modes uses Debug data and instruction breakpoint hardware to enable a trace of PC values. Instead of starting or
stopping trace, a triggerpoint will cause a single breakpoint match trace record. This record indicates that there was a
triggerpoint match, the breakpoint ID of the matching breakpoint, and the PC value of an instruction that matched the
instruction of data breakpoint.This mode can only be used when normal tracing mode is turned off. This mode can not
be used in conjunction with other special trace modes. This mode is enabled or disabled via the BM field in the Con-
trol/Status register (see Section 8.9.6 “ITCB Register Interface for Software Configurability”).

The breakpoints used in this mode must have the TE bet set to enable the match condition.

Software should avoid setting up overlapping breakpoints. The behavior when multiple matches occur on the same
instruction is to report a Breakpoint ID of 7.

Filtered Data Tracing Mode

This mode uses Debug data breakpoint hardware to enable a trace of data values. Rather than starting or stopping
trace as in normal trace mode, a data triggerpoint will cause a filtered data trace record. This record indicates that
there was a data triggerpoint match, the breakpoint ID of the matching breakpoint, whether it was a load or store, the
size of the request, low order address bits, and the data value. This mode can only be used when normal tracing mode
is turned off. This mode can not be used in conjunction with other special trace modes. This mode can be enabled or
disabled via the FDT bit in the Control/Status register (see Section 8.9.6 “ITCB Register Interface for Software
Configurability”).

The corresponding data breakpoint must have the TE bit set to enable the match condition.

Software should avoid setting up overlapping data breakpoints. The behavior when multiple matches on one load or
store are detected is to report a Breakpoint ID of 7.

Extended Filtered Data Tracing Mode

Extends Filtered Data Tracing Mode by adding the virtual address of the load/store instruction to the generated trace
information. (see Section “Filtered Data Tracing Mode” above).

This behavior is enabled/disabled by the FDT_CAUSE field in the IFCTL Control/Status register (see Section
8.9.6 “ITCB Register Interface for Software Configurability”). FDT_CAUSE only has effect if the FDT field is also
set.

The extended trace sequence is a FDT trace message followed by the Breakpoint Match (BM) trace message. If the
IFCTLCYC field is set, the FDTtrace message will have a DeltaCycle Message value of ‘0’ directly followed by the

8.9 iFlowtrace™

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 201

Breakpoint Match message. This message sequence (FDT, delta cycle of 0, and BM) indicates to the trace disassem-
bler that Extended Filtered Data Tracing mode is enabled (IFCTLFDT_CAUSE=1).

Function Call/Return and Exception Tracing Mode

In this mode, the PC value of function calls and returns and/or exceptions and returns are traced out. This mode can
only be used when normal tracing mode is turned off. This mode cannot be used in conjunction with other special
trace modes. The function call/return and exception/return are independently enabled or disabled via the FCR and ER
bits in the Control//Status register (see Section 8.9.6 “ITCB Register Interface for Software Configurability”).

These events are reported for the following instructions:

• MIPS32 function calls: JAL, JALR, JALR.HB, JALX

• microMIPS function calls: JAL, JALR, JALR.HB, JALX, JALR16, JALRS16, JALRS, JALRS.HB, JALS

• MIPS32 function returns: JR, JR.HB

• microMIPS function returns: JR, JR.HB, JRC, JRADDIUSP, JR16

• Exceptions: Reported on the first instruction of the exception handler

• Exception returns: ERET

• MCU ASE Interrupt returns: IRET

Other Trace Messages

In any of the special trace modes, it is possible to embed messages into the trace stream directly from a program. This
is done by writing to the UserTraceData1 or UseTraceData2 COP0 registers. When UserTraceData1 register is writ-
ten, a trace message of type “User Triggered Message 1” (UTM1) is generated. When UserTraceData2 register is
written, a trace message of type “User Triggered Message 2” (UTM2) is generated. Please refer to 5.2.54 “User
Trace Data1 Register (CP0 Register 23, Select 3)/User Trace Data2 Register (CP0 Register 24, Select 3)” on
page 225.

Overflow messages can also be generated when tracing off-chip if the IO control bit is 0 and trace data is generated
faster than it is consumed. No overflow will be generated when using on-chip trace.

8.9.2.2 Special Trace Mode Outputs

The normal and special trace modes cannot be enabled at the same time because the trace message encoding is not
unique between the two modes. The software reading the trace stream must be aware of which mode is selected to
know how to interpret the bits in the trace stream. The message types for each type of special trace message are
unique.

• 00 (as above, read a bitstream from left to right) - Delta Cycle Rollover message. The output format is:
[1:0] = 2’b00

• 010 - User Trace Message. The format of this type of message is:
[2:0] = 3’b010
[34:3] = Data[31:0]
[35] = UTM2/UTM1 (1=UTM2, 0=UTM1)
[44:36] = DeltaCycle (if enabled)

 Debug Support in the M6200 Core

202 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

• 011 - Reserved

• 10 - Breakpoint Match Message. The output format during this trace mode is:
[1:0] = 2’b01
[5:2] = BreakpointID
[6] = Instruction Breakpoint
[37:7] = MatchingPC[31:1]
[38] = NCC
[48:39] = DeltaCycle (if enabled)
Note that for a MIPS32 or MIPS64 instruction, NCC=1, and for microMIPS instruction NCC=0.

• 110 - Filtered Data Message. The output format during this trace mode is:
[2:0] = 3’b011
[6:3] = BreakpointID
[7] = Load/Store (1=Load, 0=Store)
[8] = FullWord (1=32b data, 0= <32b)
[14:5] = Addr[7:2]
[46:15] = {32b data value} OR
[46:15] = {BE[3:0], 4’b0, 24b data value} OR
[46:15] = {BE[3:0], 12’b0, 16b data value} OR
[46:15] = {BE[3:0],20’b0, 8b data value}
[56:47] = DeltaCycle (if enabled)

• 1110 - Function Call/Return/Exception Tracing. The output format during this trace mode is:
[3:0] = 4’b0111
[4] = FC
[5] = Ex
[6] = R
[37:8] = PC[31:1]
[38] = NCC
[48:39] = Delta Cycle (if enabled)
Note that for a MIPS32 or MIPS64 instruction, NCC=1, and for microMIPS instruction NCC=0. FC=1 implies a
function call, Ex=1 implies the start of an exception handler, and R=1 implies a function or exception return.

• 1111- Overflow message. The format of this type of message is:
[3:0] = 4’b1111

8.9.3 ITCB Overview

The iFlowtrace Control Block (ITCB) is responsible for accepting trace signals from the CPU core, formatting them,
and storing them into an on-chip FIFO. The figure also shows the Probe Interface Block (PIB) which reads the FIFO
and outputs the memory contents through a narrow off-chip trace port.

 Debug Support in the M6200 Core

204 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

8.9.5 TCB Storage Representation

Records from iFlowtrace are inserted into a memory stream exactly as they appear in the iFlowtrace data output.
Records are concatenated into a continuous stream starting at the LSB. When a trace word is filled, it is written to
memory along with some tag bits. Each record consists of a 64-bit word, which comprises 58 message bits and 6 tag
bits or header bits that clarify information about the message in that word.

The ITCB includes a 58-bit shift register to accumulate trace messages. When 58 or more bits are accumulated, the 58
bits and 6 tag bits are sent to the memory write interface. Messages may span a trace word boundary; in this case, the
6 tag bits indicate the bit number of the first full trace message in the 58-bit data field.

The tag bits are slightly encoded so they can serve a secondary purpose of indicating to off-chip trace hardware when
a valid trace word transmission begins. The encoding ensures that at least one of the 4 LSBs of the tag is always a 1
for a valid trace message. The tag values are shown in Table 8.32. The longest trace message is 57 bits (filtered data
trace in special trace mode with delta cycle), so the starting position indicated by the tag bits is always between 0 and
56.

When trace stops (ON set to zero), any partially filled trace words are written to memory. Any unused space above
the final message is filled with 1’s. The decoder distinguishes 1111 patterns used for fill in this position from an 1111
overflow message by recognizing that it is the last trace word.

These trace formats are written to a trace memory that is either on-chip or off-chip. No particular size of SRAM is
specified; the size is user selectable based on the application needs and area trade-offs. Each trace word can typically
store about 20 to 30 instructions in normal trace mode, so a 1 KWord trace memory could store the history of 20K to
30K executed instructions.

1 <10><NCC><31><1><4>01 Special Mode: Breakpoint Match Message. 4-bit breakpoint ID, 1 bit indicates
breakpoint type, 31 MSBs of the PC value, NCC bit included as well as 10-bit
delta cycle if enable.

1 <10><32><6><1><1><4>011 Special Mode: Filtered Data Message. 4 bit breakpoint ID, 1 bit load or store indi-
cation, 1 bit full word indication, 6 bit of addr[7:2], 32 bit of the data information
included as well as 10 bit delta cycle if enabled.

1 <10><NCC><31><R><Ex><FC>011 Special Mode: Function Call/Return/Exception Tracing. 1 bit function call indica-
tion, 1 bit exception indication, 1 bit function or exception return indication, 31
MSBs of the PC value, NCC bit included as well as 10 bit delta cycle if enabled.

1 1111 Internal overflow

Table 8.32 Tag Bit Encoding

Starting Bit of First Full
Trace Message

Encoding
(decimal)

0 58

16 59

32 60

48 61

Unused 0,16,32,48

Reserved 62,63

Others StartingBit

Valid Data (LSBs) Description

8.9 iFlowtrace™

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 205

The on-chip SRAM or trace memory is written continuously as a circular buffer. It is accessible via drseg address
mapped registers. There are registers for the read pointer, write pointer, and trace word. The write pointer register
includes a wrap bit that indicates that the pointer has wrapped since the last time the register was written. Before start-
ing trace, the write pointer would typically be set to 0. To read the trace memory, the read pointer should be set to 0 if
there has not been a wrap, or to the value of the write pointer if there has been. Reading the trace word register will
read the entry pointed to by the read pointer and will automatically increment the read pointer. Software can continue
reading until all valid entries have been read out.

8.9.6 ITCB Register Interface for Software Configurability

The ITCB includes a drseg memory interface to allow software to set up tracing and read the current status. If an
on-chip trace buffer is also implemented, there are additional registers included for accessing it.

8.9.6.1 iFlowtrace Control/Status (IFCTL) Register (offset 0x3fc0)

The Control/Status register provides the mechanism for turning on the different trace modes. Figure 8.29 has the for-
mat of the register and Table 8.33 describes the register fields.

Figure 8.29 Control/Status Register

31 30 16 15 14 13 12 11 10 9 8 5 4 3 2 1 0

Illegal 0

FD
T_C

A
U

SE

CYC FDT BM ER FCR EST SyP OfClk OfC IO En On

Table 8.33 Control/Status Register Field Descriptions

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

0 30:16 Reserved for future use. Read as zeros, must be written as
zeros

R 0 Required

Illegal 31 This bit is set by hardware and indicates if the currently
enabled trace output modes are an illegal combination. A
value of 1 indicates an unsupported setting. A value of 0
indicates that the currently selected settings are legal.

R 0 Required

FDT_CAUSE 15 Extended Filtered Data Trace mode (FDT). Adds causing
load/store virtual address to Filtered Data Trace.
FDT_CAUSE only has effect if FDT is set.
The extended trace sequence is a FDT trace message fol-
lowed by the Breakpoint Match (BM) trace message. If
CYC is set, the FDT trace message will have a DeltaCycle
Message value of ‘0’ directly followed by the Breakpoint
match (BM) message. This message sequence (FDT, delta
cycle of 0, and BM) indicates to the trace disassembler
that Extended Filtered Data Tracing mode is enabled.

R/W 0 Optional for
iFlowtrace rev

2.0+

 Debug Support in the M6200 Core

206 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

CYC 14 Delta Cycle Mode: This mode can be set in combination
with the EST special trace modes. When set, a delta cycle
value is included in each of the trace messages and indi-
cates the number of cycles since the last message was gen-
erated. If this tracing mode is not implemented, the field is
read-only and read as zero.

R/W 0 Optional for
iFlowtrace rev

2.0+

FDT 13 Filtered Data Trace mode. If set, on a data breakpoint
match, the data value of the matching breakpoint is traced.
Normal tracing is inhibited when this mode is active. If
this tracing mode is not implemented, the field is
read-only and read as zero.

R/W 0 Optional for
iFlowtrace rev

2.0+

BM 12 Breakpoint Match. If set, only instructions that match
instruction or data breakpoints are traced. Normal tracing
is inhibited when this mode is active. If this tracing mode
is not implemented, the field is read-only and read as zero.

R/W 0 Optional for
iFlowtrace rev

2.0+

ER 11 Trace exceptions and exception returns. If set, trace
includes markers for exceptions and exception returns.
Can be used in conjunction with the FCR bit. Inhibits nor-
mal tracing. If this tracing mode is not implemented, the
field is read-only and read as zero.

R/W 0 Optional for
iFlowtrace rev

2.0+

FCR 10 Trace Function Calls and Returns. If set, trace includes
markers for function calls and returns. Can be used in con-
junction with the ER bit. If this tracing mode is not imple-
mented, the field is read-only and read as zero.

R/W 0 Optional for
iFlowtrace rev

2.0+

EST 9 Enable Special Tracing Modes. If set, normal tracing is
inhibited, allowing the user to choose one of several spe-
cial tracing modes. Setting this bit inhibits normal trace
mode. If no special tracing modes are implemented, this
field is read-only, and read as zero.

R/W 0 Optional for
iFlowtrace rev

2.0+

SyP 8:5 Synchronization Period. The synchronization period is set
to 2(SyP+8) instructions. Thus a value of 0x0 implies 256
instructions, and a value of 0xF implies 8M instructions.

R/W 0 Required for
iFlowtrace rev

2.0+

OfClk 4 Controls the Off-chip clock ratio. When the bit is set, this
implies 1:2, that is, the trace clock is running at 1/2 the
core clock, and when the bit is clear, implies 1:4 ratio, that
is, the trace clock is at 1/4 the core clock. Ignored unless
OfC is also set.

R/W 0 Required

OfC 3 Off-chip. 1 enables the PIB (if present) to unload the trace
memory. 0 disables the PIB and would be used when
on-chip storage is desired or if a PIB is not present. This
bit is settable only if the design supports both on-chip and
off-chip modes. Otherwise is a read-only bit indicating
which mode is supported.

R/W
or
R

Preset Required

IO 2 Inhibit overflow. If set, the CPU is stalled whenever the
trace memory is full. Ignored unless OfC is also set.

R/W 0 Required

Table 8.33 Control/Status Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

8.9 iFlowtrace™

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 207

8.9.6.2 ITCBTW Register (offset 0x3F80)

The ITCBTW register is used to read Trace Words from the on-chip trace memory. The TW read is the TW pointed to
by the ITCBRDP register. A side effect of reading the ITCBTW register is that the ITCBRDP register increments to
the next TW in the on-chip trace memory. If ITCBRDP is at the max size of the on-chip trace memory, the increment
wraps back to address zero.

Note that this is a 64b register.On a 32b processor, software must read the upper word (offset 0x3F84) first as the
address increment takes place on a read of the lower word (0x3F80).

The format of the ITCBTW register is shown below, and the field is described in Table 8.34.

Figure 8.30 ITCBTW Register Format

8.9.6.3 ITCBRDP Register (Offset 0x3f88)

The ITCBRDP register is the address pointer to on-chip trace memory. It points to the TW read when reading the
ITCBTW register. This value will be automatically incremented after a read of the ITCBTW register.

The format of the ITCBRDP register is shown below, and the field is described in Table 8.35. The value of n depends
on the size of the on-chip trace memory. As the address points to a 64-bit TW, lower three bits are always zero.

Figure 8.31 ITCBRDP Register Format

En 1 Trace enable. This bit may be set by software or by
Trace-on/Trace-off action bits from the Complex Trigger
block. Software writes EN with the desired initial state of
tracing when the ITCB is first turned on and EN is con-
trolled by hardware thereafter. EN turning on and off does
not flush partly filled trace words.

R/W 0 Required

On 0 Software control of trace collection. 0 disables all collec-
tion and flushes out any partially filled trace words.

R/W 0 Required

63 0

Data

Table 8.34 ITCBTW Register Field Descriptions

Fields Description Read/
Write

Reset
State

Compliance

Names Bits

Data 63:0 Trace Word R Undefined Required

31 n+1 n 0

Address

Table 8.33 Control/Status Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
State ComplianceName Bits

 Debug Support in the M6200 Core

208 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

8.9.6.4 ITCBWRP Register (Offset 0x3f90)

The ITCBWRP register is the address pointer to on-chip trace memory. It points to the location where the next new
TW for on-chip trace will be written. The top bit in the register indicates whether the pointer has wrapped. If it has,
then the write pointer will also point to the oldest trace word. and the read pointer can be set to that to read the entire
array in order. If it is cleared, then the read pointer can be set to 0 to read up to the write pointer position.

The format of the ITCBWRP register is shown below, and the field is described in Table 8.36. The value of n depends
on the size of the on-chip trace memory. As the address points to a 64-bit TW, lower three bits are always zero.

Figure 8.32 ITCBWRP Register Format

8.9.7 ITCB iFlowtrace Off-Chip Interface

The off-chip interface consists of a 4-bit data port (TR_DATA) and a trace clock (TR_CLK). TR_CLK can be a DDR
clock; that is, both edges are significant. TR_DATA and TR_CLK follow the same timing and have the same output
structure as the PDtrace TCB described in MIPS specifications. The trace clock is synchronous to the system clock
but running at a divided frequency. The OfClk bit in the Control/Status register indicates the ratio between the trace
clock and the core clock. The Trace clock is always 1/2 of the trace port data rate, hence the “full speed” ITCB out-
puts data at the CPU core clock rate but the trace clock is half that, hence the 1:2 OfClk value is the full speed, and the
1:4 OfClk ratio is half-speed.

When a 64-bit trace word is ready to transmit, the PIB reads it from the FIFO and begins sending it out on TR_DATA.
It is sent in 4-bit increments starting at the LSBs. In a valid trace word, the 4 LSBs are never all zero, so a probe lis-
tening on the TR_DATA port can easily determine when the transmission begins and then count 15 additional cycles to
collect the whole 64-bit word. Between valid transmissions, TR_DATA Is held at zero and TR_CLK continues to run.

Table 8.35 ITCBRDP Register Field Descriptions

Fields Description Read/
Write

Reset
State

Compliance

Names Bits

Data 31:(n+1) Reserved. Must be written zero, reads back zero. 0 0 Required

Address n:0 Byte address of on-chip trace memory word. R/W Undefined Required

31 30 n+1 n 0

Wrap 0 Address

Table 8.36 ITCBWRP Register Field Descriptions

Fields Description Read/
Write

Reset
State

Compliance

Names Bits

Wrap 31 Indicates that the entire array has been written at least
once R/W Undefined Required

0 30:(n+1) Reserved. Must be written zero, reads back zero. 0 0 Required

Address n:0 Byte address of the next on-chip trace memory word to
be written R/W Undefined Required

8.10 PC/Data Address Sampling

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 209

TR_CLK runs continuously whenever a probe is connected. An optional signal TR_PROBE_N may be pulled high
when a probe is not connected and could be used to disable the off-chip trace port. If not present, this signal must be
tied low at the Probe Interface Block (PIB) input.

The following encoding is used for the 6 tag bits to tell the PIB receiver that a valid transmission is starting:

// if (srcount == 0), EncodedSrCount = 111010 = 58
// else if (srcount == 16) EncodedSrCount = 111011 = 59
// else if (srcount == 32) EncodedSrCount = 111100 = 60
// else if (srcount == 48) EncodedSrCount = 111101 = 61
// else EncodedSrCount = srcount

8.9.8 Breakpoint-Based Enabling of Tracing

Each hardware breakpoint in the Debug block has a control bit associated with it that enables a trigger signal to be
generated on a break match condition. In special trace mode, this trigger can be used to insert an event record into the
trace stream. In normal trace mode, this trigger signal can be used to turn trace on or off, thus allowing a user to con-
trol the trace on/off functionality using breakpoints. Similar to the TraceIBPC and TraceDBPC registers in PDtrace,
registers are defined to control the start and stop of iFlowtrace. The details on the actual register names and drseg
addresses are shown in Table 8.37.

The bits in each register are defined as follows:

• Bit 28 (IE/DE): Used to specify whether the trigger signal from simple or complex instruction (data or tuple)
break should trigger iFlowtrace tracing functions or not. A value of 0 disables trigger signals from instruction
breaks, and 1 enables triggers for the same.

• Bits 14:0 (IBrk/DBrk): Used to explicitly specify which instruction (data or tuple) breaks enable or disable
iFlowtrace. A value of 0 implies that trace is turned off (unconditional trace stop) and a value of 1 specifies that
the trigger enables trace (unconditional trace start).

8.10 PC/Data Address Sampling

It is often useful for program profiling and analysis to periodically sample the value of the PC. This information can
be used for statistical profiling akin to gprof, and is also very useful for detecting hot-spots in the code. In a
multi-threaded environment, this information can be used to understand thread behavior, and to verify thread schedul-
ing mechanisms in the absence of a full-fledged tracing facility like PDtrace.

The PC sampling feature is optional.When implemented, PC sampling can be turned on or off using an enable bit;
when the feature is enabled, the PC value is continually sampled.

Table 8.37 drseg Registers that Enable/Disable Trace from Breakpoint-Based Triggers

Register Name drseg Address Reset Value Description

ITrigiFlowTrcEn 0x3FD0 0 Register that controls whether or not hard-
ware instruction breakpoints can trigger
iFlowtrace tracing functionality

DTrigiFlowTrcEn 0x3FD8 0 Register that controls whether or not hard-
ware data and tuple breakpoints can trig-
ger iFlowtrace tracing functionality

 Debug Support in the M6200 Core

210 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

The presence or absence of PC Sampling is indicated by the PCS (PC Sample) bit in the Debug Control Register. If
PC sampling is implemented, and the PCSe (PC Sample Enable) bit in the Debug Control Register is also set to one,
then the PC values are constantly sampled at the defined rate (DCRPCR) and written to a TAP register. The old value
in the TAP register is overwritten by the new value, even if this register has not been read out by the debug probe.

The presence or absence of Data Address Sampling is indicated by the DAS (Data Address Sample) bit in the Debug
Control Register and enabled by the DASe (Data Address Sampling Enable) bit in the Debug Control Register.

The sample rate is specified by the 3-bit PCR (PC Sample Rate) field (bits 8:6) in the Debug Control Register (DCR).
These three bits encode a value 25 to 212 in a manner similar to the specification of SyncPeriod. When the implemen-
tation allows these bits to be written, the internal PC sample counter will be reset by each write, so that counting for
the requested sample rate is immediately restarted.

The sample format includes a New data bit, the sampled value, the ASID of the sampled value (if not disabled by
PCnoASID, bit 25 in DCR). Figure 8.5 and Figure 8.4 show the format of the sampled values in the PCSAMPLE reg-
ister. The New data bit is used by the probe to determine if the sampled data just read out is new or has already been
read and must be discarded.

The sampled PC value is the PC of the graduating instruction in the current cycle. If the processor is stalled when the
PC sample counter overflows, then the sampled PC is the PC of the next graduating instruction. The processor contin-
ues to sample the PC value even when it is in Debug mode.

Note that some of the smaller sample periods can be shorter than the time needed to read out the sampled value. That
is, it might take 41 (TCK) clock ticks to read a MIPS32 sample, while the smallest sample period is 32 (processor)
clocks. While the sample is being read out, multiple samples may be taken and discarded, needlessly wasting power.
To reduce unnecessary overhead, the TAP register includes only those fields that are enabled. If both PC Sampling
and Data Sampling are enabled, then both samples are included in the PC Sample scan register. PC Sample is in the
least significant bits followed by a Data Address Sample. If either PC Sampling or Data Address Sampling is dis-
abled, then the TAP register does not include that sample. The total scan length is 49 * 2 = 82 bits if all fields are pres-
ent and enabled.

8.10.1 PC Sampling in Wait State

Note that the processor samples PC even when it is asleep, that is, in a WAIT state. This permits an analysis of the
amount of time spent by a processor in WAIT state which may be used for example to revert to a low power mode
during the non-execution phase of a real-time application. But counting cycles to update the PC sample value is a
waste of power. Hence, when in a WAIT state, the processor must simply switch the New bit to 1 each time it is set to
0 by the probe hardware. Hence, the external agent or probe reading the PC value will detect a WAIT instruction for
as long as the processor remains in the WAIT state. When the processor leaves the WAIT state, then counting is
resumed as before.

8.10.2 Data Address Sampling

The PC sampling mechanism to allow sampling of data (load and store) addresses. This feature is enabled with
DASe, bit 23 in the Debug Control Register. When enabled, the PCSAMPLE scan register includes a data address
sample. All load and store addresses can be captured, or they can be qualified using a data breakpoint trigger.
DASQ=1 configures data sampling to record a data address only when it triggers data breakpoint 0. To be used for
Data Address Sampling qualification, data breakpoint 0 must be enabled using its TE (trigger enable) bit.

PCSR controls how often data addresses are sampled. When the PCSR counter triggers, the most recent load/store
address generated is accepted and made available to shift out through PCSAMPLE.

 Debug Support in the M6200 Core

212 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

Refer to MIPS® Architecture For Programmers Volume III [12] for full details on the CDMM.

8.11.2 Fast Debug Channel Interrupt

The FDC block can generate an interrupt to inform software of incoming data being available or space being avail-
able in the outgoing FIFO. This interrupt is handled similarly to the timer or performance counter interrupts. The
CauseFDCI bit indicates that the interrupt is pending. The interrupt is also sent to the core output SI_FDCI where it is
combined with one of the SI_Int pins. For non-EIC mode, the SI_IPFDCI input indicates which interrupt pin is has
been combined with and this information is reflected in the IntCtlIPFDCI field. Note that this interrupt is a regular
interrupt and not a debug interrupt.

The FDC Configuration Register (see Section 8.11.6.2 “FDC Configuration (FDCFG) Register (Offset 0x8)”)
includes fields for enabling and setting the threshold for generating each interrupt. Receive and transmit interrupt
thresholds are specified independently, but they are ORed together to form a single interrupt.

The following interrupt thresholds are supported:

• Interrupts Disabled: No interrupt will be generated and software must poll the status registers to determine if
incoming data is available or if there is space for outgoing data.

• Minimum Core Overhead: This setting minimizes the core overhead by not generating an interrupt until the
receive FIFO (RxFIFO) is completely full or the transmit FIFO (TxFIFO) is completely empty.

• Minimum latency: To have the core take data as soon as it is available, the receive interrupt can be fired when-
ever the RxFIFO is not empty. There is a complimentary TxFIFO not full setting although that may not be quite
as useful.

• Maximum bandwidth: When configured for minimum core overhead, bandwidth between the probe and core can
be wasted if the core does not service the interrupt before the next transfer occurs. To reduce the chances of this
happening, the interrupt threshold can be set to almost full or almost empty to generate an interrupt earlier. This
setting causes receive interrupts to be generated when there are 0 or 1 unused RxFIFO entries. Transmit inter-
rupts are generated when there are 0 or 1 used TxFIFO entries (see note in following section about this condition)

8.11.3 M6200 Core FDC Buffers

Figure 8.34 shows the general organization of the transmit and receive buffers on the M6200 core.

 Debug Support in the M6200 Core

214 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

condition is met, there will be 0 or 1 valid entries. However, the interrupt will not be asserted when there is only
one valid entry if it is an SI_ClkIn entry

• The RxFIFO has similar characteristics, but these are even less visible to software since SI_ClkIn must be run-
ning to access the FDC registers.

8.11.4 Sleep mode

FDC data transfers do not prevent the core from entering sleep mode and will proceed normally in sleep mode. The
FDC block monitors the TAP interface signals with a free-running clock. When new receive data is available or trans-
mit data can be sent, the gated clock will be enabled for a few cycles to transfer the data and then allowed to stop
again. If FDC interrupts are enabled, transferring data may cause an interrupt to be generated which can wake the
core up.

8.11.5 FDC TAP Register

The FDC TAP instruction performs a 38-bit bidirectional transfer of the FDC TAP register. The register format is
shown in Figure 8.35 and the fields are described in Figure 8.38

Figure 8.35 FDC TAP Register Format

37 36 35 32 31 0

In Probe Data
Accept

Data In
Valid

ChannelID Data
Out Receive

Buffer Full
Data Out

Valid

Table 8.38 FDC TAP Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

Probe Data
Accept

37 Indicates to core that the probe is accepting the data that
was scanned out.

W Undefined

Data In Valid 36 Indicates to core that the probe is sending new data to the
receive FIFO.

W Undefined

Receive Buf-
fer Full

37 Indicates to probe that the receive buffer is full and the
core will not accept the data being scanned in. Analogous
to ProbeDataAccept, but opposite polarity

R 0x0

Data Out
Valid

36 Indicates to probe that the core is sending new data from
the transmit FIFO

R 0

ChannelID 35:32 Channel number associated with the data being scanned in
or out. This field can be used to indicate the type of data
that is being sent and allow independent communication
channels

Scanning in a value with ChannelID=0xd and Data In
Valid = 0 will generate a receive interrupt. This can be
used when the probe has completed sending data to the
core.

R/W Undefined

8.11 Fast Debug Channel (FDC)

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 215

8.11.6 Fast Debug Channel Registers

This section describes the Fast Debug Channel registers. CPU access to FDC is via loads and stores to the FDC
device in the Common Device Memory Map (CDMM) region. These registers provide access control, configuration
and status information, as well as access to the transmit and receive FIFOs. The registers and their respective offsets
are shown in Table 8.39

8.11.6.1 FDC Access Control and Status (FDACSR) Register (Offset 0x0)

This is the general CDMM Access Control and Status register which defines the device type and size and controls
user and supervisor access to the remaining FDC registers. The Access Control and Status register itself is only acces-
sible in kernel mode. Figure 8.36 has the format of an Access Control and Status register (shown as a 64-bit register),
and Table 8.40 describes the register fields.

Figure 8.36 FDC Access Control and Status Register

Data 31:0 Data value being scanned in or out R/W Undefined

Table 8.39 FDC Register Mapping

Offset in CDMM
device block

Register
Mnemonic Register Name and Description

0x0 FDACSR FDC Access Control and Status Register

0x8 FDCFG FDC Configuration Register

0x10 FDSTAT FDC Status Register

0x18 FDRX FDC Receive Register

0x20 + 0x8* n FDTXn FDC Transmit Register n (0  n  15)

63 32 31 24 23 22 21 16 15 12 11 4 3 2 1 0

0 DevID 0 DevSize DevRev 0 Uw Ur Sw Sr

Table 8.40 FDC Access Control and Status Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

DevType 31:24 This field specifies the type of device. R 0xfd

DevSize 21:16 This field specifies the number of extra 64-byte blocks
allocated to this device. The value 0x2 indicates that this
device uses 2 extra, or 3 total blocks.

R 0x2

DevRev 15:12 This field specifies the revision number of the device. The
value 0x0 indicates that this is the initial version of FDC

R 0x0

Table 8.38 FDC TAP Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

 Debug Support in the M6200 Core

216 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

8.11.6.2 FDC Configuration (FDCFG) Register (Offset 0x8)

The FDC configuration register holds information about the current configuration of the Fast Debug Channel mecha-
nism. Figure 8.37 has the format of the FDC Configuration register, and Table 8.41 describes the register fields.

Figure 8.37 FDC Configuration Register

Uw 3 This bit indicates if user-mode write access to this device
is enabled. A value of 1 indicates that access is enabled. A
value of 0 indicates that access is disabled. An attempt to
write to the device while in user mode with access dis-
abled is ignored.

R/W 0

Ur 2 This bit indicates if user-mode read access to this device is
enabled. A value of 1 indicates that access is enabled. A
value of 0 indicates that access is disabled. An attempt to
read from the device while in user mode with access dis-
abled will return 0 and not change any state.

R/W 0

Sw 1 This bit indicates if supervisor-mode write access to this
device is enabled. A value of 1 indicates that access is
enabled. A value of 0 indicates that access is disabled.

R/W 0

Sr 0 This bit indicates if supervisor-mode read access to this
device is enabled. A value of 1 indicates that access is
enabled. A value of 0 indicates that access is disabled.

R/W 0

0 11:4 Reserved for future use. Ignored on write; returns zero on
read.

R 0

31 20 19 18 17 16 15 8 7 0

0 Tx_IntThresh Rx_IntThresh TxFIFOSize RxFIFOSize

Table 8.41 FDC Configuration Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

0 31:20 Reserved for future use. Read as zeros, must be written as
zeros.

R 0

Table 8.40 FDC Access Control and Status Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
StateName Bits

8.11 Fast Debug Channel (FDC)

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 217

8.11.6.3 FDC Status (FDSTAT) Register (Offset 0x10)

The FDC Status register holds up to date state information for the FDC mechanism. Figure 8.38 shows the format of
the FDC Status register, and Table 8.42 describes the register fields.

Figure 8.38 FDC Status Register

TxIntThresh 19:18 Controls whether transmit interrupts are enabled and the
state of the TxFIFO needed to generate an interrupt.

R/W 0

RxIntThresh 17:16 Controls whether receive interrupts are enabled and the
state of the RxFIFO needed to generate an interrupt.

R/W 0

TxFIFOSize 15:8 This field holds the total number of entries in the transmit
FIFO.

R Preset

RxFIFOSize 7:0 This field holds the total number of entries in the receive
FIFO.

R Preset

31 24 23 16 15 8 7 4 3 2 1 0

Tx_Count Rx_Count 0 RxChan RxE RxF TxE TxF

Table 8.42 FDC Status Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

Tx_Count 31:24 This optional field is not implemented and will read as 0 R 0

Rx_Count 23:16 This optional field is not implemented and will read as 0 R 0

0 15:8 Reserved for future use. Must be written as zeros and read
as zeros.

R 0

RxChan 7:4 This field indicates the channel number used by the top
item in the receive FIFO. This field is only valid if RxE=0.

R Undefined

Table 8.41 FDC Configuration Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
StateName Bits

Encoding Meaning

0 Transmit Interrupt Disabled
1 Empty
2 Not Full
3 Almost Empty - zero or one entry in

use (see 8.11.2 for specifics)

Encoding Meaning

0 Receive Interrupt Disabled
1 Full
2 Not empty
3 Almost Full - zero or one entry free

 Debug Support in the M6200 Core

218 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

8.11.6.4 FDC Receive (FDRX) Register (Offset 0x18)

This register exposes the top entry in the receive FIFO. A read from this register returns the top item in the FIFO and
removes it from the FIFO itself. The result of a write to this register is UNDEFINED. The result of a read when the
FIFO is empty is also UNDEFINED so software must check the RxE flag in FDSTAT prior to reading. Figure 8.39
shows the format of the FDC Receive register, and Table 8.43 describes the register fields.

Figure 8.39 FDC Receive Register

8.11.6.5 FDC Transmit n (FDTXn) Registers (Offset 0x20 + 0x8*n)

These sixteen registers access the bottom entry in the transmit FIFO. The different addresses are used to generate a 4b
channel identifier that is attached to the data value. This allows software to track different event types without need-
ing to reserve a portion of the 32b data as a tag. A write to one of these registers results in a write to the transmit FIFO
of the data value and channel ID corresponding to the register being written. Reads from these registers are UNDE-
FINED. Attempting to write to the transmit FIFO if it is full has UNDEFINED results. Hence, the software running
on the core must check the TxF flag in FDSTAT to ensure that there is space for the write. Figure 8.40 shows the for-
mat of the FDC Transmit register, and Table 8.44 describes the register fields.

Figure 8.40 FDC Transmit Register

RxE 3 If RxE is set, the receive FIFO is empty. If RxE is not set,
the FIFO is not empty.

R 1

RxF 2 If RxF is set, the receive FIFO is full. If RxF is not set, the
FIFO is not full.

R 0

TxE 1 If TxE is set, the transmit FIFO is empty. If TxE is not set,
the FIFO is not empty.

R 1

TxF 0 If TxF is set, the transmit FIFO is full. If TxF is not set, the
FIFO is not full.

R 0

31 0

RxData

Table 8.43 FDC Receive Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

RxData 31:0 This register holds the top entry in the receive FIFO R Undefined

31 0

TxData

Table 8.42 FDC Status Register Field Descriptions (Continued)

Fields

Description
Read /
Write

Reset
StateName Bits

8.12 Examples of Debug Operations

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 219

8.12 Examples of Debug Operations

Example: Write to OCR, no other operations. The MDH JTAG sequence is:

IR: select DEVICEADDR
DR: write 0x0 -> assumes device address of Viking core is 0.
 Note: A[6:0] are reserved and not writable, return 0
IR: select APBACCESS
DR: scan in: execute=1; RnW=W; Addr=0x05 (OCR reg); data=32 bit value to be written
 scanned out: <don't care>
DR: scan in: execute=0; <the rest are don't cares>
 scan out: if valid=1 write completed, OK/Fault and error codes are also valid; probe checks these for any errors
 if valid = 0 probe continues to scan in execute = 0 until OCR= 1 is returned

Example: Read OCR register, no other operations.

Assuming DEVICEADDR is already set up and IR has selected APBACCESS
DR: scan in: execute=1; RnW=R; Addr=0x05; data=<don't care>
 scanned out: <don't care>
DR: scan in: execute=0 <the remaining fields are don't cares>
 scan out: valid = 1; OK/Fault = 1; data=OCR value
 if valid=1 read completed
 if valid = 0 probe continues to scan in execute = 0 until valid = 1 at which time data = OCR value

Example: Cause core to execute a sequence of instructions in debug mode

Table 8.44 FDC Transmit Register Field Descriptions

Fields

Description
Read /
Write

Reset
StateName Bits

TxData 31:0 This register holds the bottom entry in the transmit FIFO W, Unde-
fined value

on read

Undefined

Table 8.45 FDTXn Address Decode

Address Channel Address Channel Address Channel Address Channel

0x20 0x0 0x40 0x4 0x60 0x8 0x80 0xc

0x28 0x1 0x48 0x5 0x68 0x9 0x88 0xd

0x30 0x2 0x50 0x6 0x70 0xa 0x90 0xe

0x38 0x3 0x58 0x7 0x78 0xb 0x98 0xf

 Debug Support in the M6200 Core

220 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

Assuming DEVICEADDR is already set up and IR has selected APBACCESS

 First - check that core is in debug mode by polling OCR
DR: scan in: execute=1; RnW=R; Addr=0x05 (OCR reg);
 scanned out: <don't care>
DR: scan in: execute=1; RnW=R; Addr=0x05 (OCR reg);
 scan out: OCR value (from previous scan in). probe checks: if OCR.DM = 0 continue scans
DR: scan in: execute=1; RnW=R; Addr=0x05 (OCR reg);
 scan out: OCR value (from previous scan in). if OCR.DM = 1 move on
 now cause core to execute a series of instructions in debug mode
DR: scan in: execute=1; RnW=W; Addr=0x04 (DATA reg); set Data = instr1 opcode
 scan out: ignore
DR: scan in: execute=1; RnW=W; Addr=0x04 (DATA reg); set Data = instr2 opcode
 scan out: if valid=1 write completed so instr1 has executed
 if valid = 0 probe continues to scan in instr2 with execute = 1 until valid = 1 at which time instr1 completed
DR: scan in: execute=1; RnW=W; Addr=0x04 (DATA reg); set Data = instr3 opcode
 <etc on polling valid = 1>

If the instruction is a load from dmseg then the next DR scan in is a Write to DATA with the value being passed from
the probe to the core

If the instruction is a store to dmseg then the next DR scan in is a Read of DATA of the value being picked up by the
probe

Example: Read the DCR register, which is at offset 0 of drseg

Assuming DEVICEADDR is already set up and IR has selected APBACCESS
DR: scan in: execute=1; RnW=W; Addr=0x06 (DRSEG_ADDR reg); set Data = 0x7F300000 (A31=0 means no
auto-incr)
 scan out: ignore
DR: scan in: execute=1; RnW=R; Addr=0x07 (DRSEG_DATA reg); Data = <don’t care>
 scan out: check valid=1 that write to DRSEG_ADDR was successful
DR: scan in: execute=0; <remaining fields are don't cares>
 scan out: check valid=1 that read of DRSEG_DATA was successful; if it wasn’t continue the scan, if it was,
save data field which is DCR contents.

Example: Take multiple pcsamples

 Assuming DEVICEADDR is already set up and IR has selected APBACCESS

 The sequence is to read PCSAMPLE1 register then PCSAMPLE2 register continuously; probe concatenates the two
sample data values into one complete sample set. Note: the data scanned out is always from the previous sample reg-
ister read

DR: scan in: execute=1; RnW=R; Addr=0x08 (PCSAMPLE1 reg); Data = <don’t care>
 scan out: ignore
DR: scan in: execute=1; RnW=R; Addr=0x09 (PCSAMPLE2 reg); Data = <don’t care>
 scan out: check valid=1 that read of PCSAMPLE1 was successful; if it was, save data as lower 32 bits of first
sample
DR: scan in: execute=1; RnW=R; Addr=0x08 (PCSAMPLE1 reg); Data = <don’t care> Start 2nd sample

8.12 Examples of Debug Operations

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 221

 scan out: check valid=1 that read of PCSAMPLE2 was successful; if it was, save data as upper 32 bits of first
sample; probe extracts the fields, buffers, then sends a set of samples to host the size of a comm packet
 <continue>

The probe may need to check for target hitting a breakpoint or being reset periodically. So the probe will need to read
the OCR to check DbgBrk and Rocc, then return to pc sampling.

Chapter 9

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 222

MIPS32® Instruction Set Architecture

This chapter provides an overview of the M6200 MIPS32 instruction set, including a description of CPU instruction
formats, instruction access types, and descriptions of the instructions grouped by function.

9.1 MIPS32® Release 6 ISA

The M6200 processor core supports the MIPS32 Release 6 ISA, which maintains backward-compatibility with previ-
ous releases using trap-and-emulate or trap-and-patch; all pre-Release 6 binaries can execute under binary translation.
The new R6 unconditional compact branches without a forbidden slot allow single-instruction patching.

9.2 CPU Instruction Formats

All CPU instructions consist of a single 32-bit word, aligned on a word boundary.

There are three basic instruction formats: register (R-type), immediate (I-type), and jump (J-type), shown in Figure
9.1 through Figure 9.8). The fields in the instruction formats are described in Table 9.1.

For MIPS instructions, the layout of the bit fields in instructions is little-endian, regardless of the endianness mode in
which the processor is executing. Bit 0 of an instruction is always the right-most bit in the instruction, while bit 31 is
always the left-most bit in the instruction. The major opcode is always the left-most 6 bits in the instruction.

Table 9.1 CPU Instruction Format Fields

Field Description

opcode 6-bit primary operation code. The 6 most-significant bits of the instruction encoding.

function 6-bit function field used to specify functions within the primary opcode SPECIAL. The 6
least-significant bits of the instruction encoding.

rd 5-bit specifier for the destination register.

rs 5-bit specifier for the source register.

rt 5-bit specifier for the target (source/destination) register

sa 5-bit shift amount

rt 5-bit specifier for the target (source/destination) register or used to specify functions within the
primary opcode REGIMM.

sa 5-bit shift amount.

immediate16 16-bit signed immediate used for logical operands, arithmetic signed operands, load/store
address byte offsets, and PC-relative branch signed instruction displacement.

9.2 CPU Instruction Formats

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 223

Figure 9.1 Register (R-Type) CPU Instruction Format

Several different Immediate (I-Type) instruction formats are shown in Figure 9.2. The 16-bit immediate constant
inside the first instruction format can be used for both computation and memory/branch offset; the immediates in the
other formats are mainly used as memory offset or branch displacement.

Figure 9.2 Immediate (I-Type) CPU Instruction Formats Summary

The most common MIPS Immediate (I-Type) instruction format is the Imm16 format shown in Figure 9.3. The 16-bit
signed immediate is used for logical operands, arithmetic signed operands, load/store address byte offsets, and
PC-relative branch signed instruction displacements.

Figure 9.3 Immediate (I-Type) Imm16 CPU Instruction Format

The Immediate (I-Type) Off21 CPU instruction format, shown in Figure 9.4, is used by instructions that compare a
register against zero and branch (e.g., BLTZC), with larger than the usual 16-bit span.

immediate A constant stored inside the instruction (as opposed to a constant separately in memory, that
must be accessed using a load instruction).

Unless further qualified, immediate typically refers to a 16-bit immediate occupying the least
significant 16 bits of a 32-bit MIPS instruction. This 16-bit signed immediate is used for logical
operands, arithmetic signed operands, load/store address byte offsets, and PC-relative branch
signed instruction displacements.

Some instructions have other immediate widths, for example, 9-, 10-, 21-, and 26-bit offsets and
displacements, and the 26-bit instr_index.

offset An immediate constant in the instruction, used in forming a memory address or a PC-relative
branch target. 16-bit offsets using the 16-bit immediate field are most common, although certain
instructions have 9-, 18-, 19-, 21-, and 26-bit offsets.

instr_index 26-bit index shifted left two bits to supply the low-order 28 bits of the jump target address.

31 26 25 21 20 16 15 11 10 6 5 0

opcode rs rt rd sa function
6 5 5 5 5 6

31 26 25 21 20 16 15 11 10 6 5 0

opcode rs rt immediate

opcode rd offset

opcode offset

opcode rs rt rd offset

opcode base rt offset function

31 26 25 21 20 16 15 0

opcode rs rt immediate
6 5 5 16

Table 9.1 CPU Instruction Format Fields (Continued)

Field Description

 MIPS32® Instruction Set Architecture

224 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

Certain PC-relative instructions use offsets 18- and 19-bits wide, using the low-order bits of the 21-bit immediate as
extra opcode bits.

Figure 9.4 Immediate (I-Type) Off21 CPU Instruction Format

The Immediate (I-Type) Off26 CPU instruction format, shown in Figure 9.5, is used for PC- relative branches with
very large displacements, namely BC and BALC. The 26-bit immediate, shifted left by 2 bits, yields a span of 28-bits,
or +/- 128 megabytes of instructions.

Figure 9.5 Immediate (I-Type) Off26 CPU Instruction Format

The Immediate (I-Type) Off11 CPU instruction format, shown in Figure 9.6, is used for encodings of Coprocessor 2
load and store instructions (LWC2, SWC2, LDC2, SWC2).

Figure 9.6 Immediate (I-Type) Off11 CPU Instruction Format

The Immediate (I-Type) Off9 CPU Instruction Format format, shown in Figure 9.7, provides a 9-bit memory offset.

Figure 9.7 Immediate (I-Type) Off9 CPU Instruction Format

The Jump (J-Type) CPU instruction format is shown in Figure 9.8. This format is used in the instructions J (jump),
JAL (jump-and-link), and JALX (jump and link-exchange), where the instr_index bits replaced corresponding bits in
the PC.

Figure 9.8 Jump (J-Type) CPU Instruction Format

9.2.0.1 PC-relative Loads

PC-relative loads have a span of +/- 1 Megabytes. The LWPC instruction loads a 32-bit word from a PC-relative
address, formed by adding the word-aligned PC to a sign- extended 19-bit immediate shifted left by 2 bits, giving a
21-bit span.

Note that PC-relative load instructions can only generate aligned memory addresses.

31 26 25 21 20 0

opcode rd offset
6 5 21

31 26 25 0

opcode offset
6 26

31 26 25 21 20 16 15 11 10 0

opcode rs rt rd offset
6 5 5 5 11

31 26 25 21 20 16 15 7 6 5 0

opcode base rt offset 0 function
6 5 5 9 6

31 26 25 0

opcode instr_index
6 26

9.3 Load and Store Instructions

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 225

9.3 Load and Store Instructions

MIPS processors use a load/store architecture; all operations are performed on operands in processor registers. and
main memory is accessed only through load and store instructions. Load and store instructions are of type immediate
(I-type).

9.3.1 Scheduling a Load Delay Slot

A load instruction that does not allow its result to be used by the instruction immediately following is called a delayed
load instruction. The instruction slot immediately following this delayed load instruction is referred to as the load
delay slot.

In the M6200 core, the instruction immediately following a load instruction can use the contents of the loaded regis-
ter; however, in such cases hardware interlocks insert additional real cycles. Although not required, the scheduling of
load delay slots can be desirable, both for performance and R-Series processor compatibility.

9.3.2 Load and Store Access Types

Access type indicates the size of a core data item to be loaded or stored, set by the load or store instruction opcode.
The following data sizes are transferred by CPU load and store instructions:

• Byte

• Halfword

• Word

Signed and unsigned integers of different sizes are supported by loads that either sign-extend or zero-extend the data
loaded into the register.

Regardless of access type or byte ordering (endianness), the address given specifies the low-order byte in the
addressed field. For a big-endian configuration, the low-order byte is the most-significant byte; for a little-endian
configuration, the low-order byte is the least-significant byte.

The access type, together with the three low-order bits of the address, define the bytes accessed within the addressed
word as shown in Table 9.2. Only the combinations shown in the Table are permissible; other combinations cause
address error exceptions.

Table 9.2 Byte Access Within a Word

Bytes Accessed

Low Order
Address Bits

Big Endian
(31---------------------0)

Little Endian
(31---------------------0)

Access Type 2 1 0 Byte Byte

Word 0 0 0 0 1 2 3 3 2 1 0

Triplebyte 0 0 0 0 1 2 2 1 0

0 0 1 1 2 3 3 2 1

Halfword 0 0 0 0 1 1 0

0 1 0 2 3 3 2

 MIPS32® Instruction Set Architecture

226 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

9.3.3 PC-relative Loads

The M6200 core provides the following PC-relative loads with a span of +/- 1 Megabytes:

• LWPC: Loads a 32-bit word from a PC-relative address, formed by adding the word-aligned PC to a sign-
extended 19-bit immediate shifted left by 2 bits, giving a 21-bit span.

• LWUPC: Loads a 32-bit unsigned word from a PC-relative address, formed by adding the word-aligned PC to a
sign-extended 19-bit immediate shifted left by 3 bits, giving a 21-bit span.

• LDPC: Loads a 64-bit doubleword from a PC-relative address, formed by adding the PC, aligned to 8 bytes by
masking off the low 3 bits, to a sign-extended 18-bit immediate, shifted left by 3 bits, giving a 21-bit span.

Note that PC-relative load instructions can only generate aligned memory addresses.

9.4 Computational Instructions

Computational instructions can be either in register (R-type) format, in which both operands are registers, or in imme-
diate (I-type) format, in which one operand is a 16-bit immediate.

Computational instructions perform the following operations on register values:

• Arithmetic

• Logical

• Shift

• Multiply

• Divide

Byte 0 0 0 0 0

0 0 1 1 1

0 1 0 2 2

0 1 1 3 3

Table 9.3 PC-relative Loads

Mnemonic Instruction

LWPC Load Word, PC-relative

LWUPC Load Unsigned Word, PC-relative

LDPC Load Doubleword, PC-relative

Table 9.2 Byte Access Within a Word

Bytes Accessed

Low Order
Address Bits

Big Endian
(31---------------------0)

Little Endian
(31---------------------0)

Access Type 2 1 0 Byte Byte

9.4 Computational Instructions

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 227

These operations fit in the following four categories of computational instructions:

• ALU Immediate

• Three-operand Register-type

• Shift

• Multiply And Divide

9.4.1 Cycle Timing for Multiply and Divide Instructions

Any multiply instruction in the integer pipeline is transferred to the multiplier as remaining instructions continue
through the pipeline.

9.4.2 ALU Immediate and Three-Operand Instructions

The immediate operand is treated as a signed value for the arithmetic and compare instructions, and treated as a logi-
cal value (zero-extended to register length) for the logical instructions.

The M6200 provides the instructions shown in Table 9.4 that are especially suited to address computations and the
creation of large constants. Large constants can be formed efficiently using the upper bits with the 16-bit immediates
available in most memory access and arithmetic instructions.

• Left Shift Add: LSA add two registers, one of which is optionally shifted by a scaling factor from 1 to 4, corre-
sponding to a scaling multiplication, e.g., by element size in an array, by 1, 2, 4, 8, or 16.

• Add Upper Immediate: AUI adds an immediate value to a register. The immediate value is sign-extended and
shifted by 16 bits.

• Add Immediate Unsigned PC: ADDIUPC adds an immediate value to the lower bits of the PC, This instruction
performs a PC-relative address calculation. The 19-bit immediate is shifted left by 2 bits, sign-extended, and
added to the address of the ADDIUPC instruction. The result is placed in GPR rs.

• Add Upper Immediate PC: AUIPC adds the immediate to the upper bits 31:16 of the PC. This instruction per-
forms a PC-relative address calculation. The 16-bit immediate is shifted left by 16 bits and sign-extended, and
added to the address of the AUIPC instruction. The result is placed in GPR rs.

• Add Lower Unsigned Immediate PC: ALUIPC adds the immediate to the upper bits of the PC, zeroing the low
16 bits of the PC. This instruction performs a PC-relative address calculation. The 16-bit immediate is shifted left
by 16 bits, sign-extended, and added to the address of the ALUIPC instruction. The low 16 bits of the result are
cleared, that is the result is aligned on a 64K boundary. The result is placed in GPR rs.

Table 9.4 Address Computation and Large Constant Instructions

Mnemonic Instruction

LSA Left Shift Add (Word)

AUI Add Upper Immediate (Word)

ADDIUPC Add Immediate Unsigned to PC

AUIPC Add Upper Immediate to PC

ALUIPC Aligned Add Upper Immediate to PC

 MIPS32® Instruction Set Architecture

228 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

Note: These instructions sign-extend the 16-bit immediate. The “unsigned” in the name “Add Immediate
Unsigned to PC” means that 32-bit overflow detection is not performed. Compare to ADD/ADDU.

9.4.3 Shift Instructions

The BITSWAP instruction reverses the bits in every byte of its operand. BITSWAP corresponds to MIPS DSP Mod-
ule BITREV.

The ALIGN instruction concatenates its two operands and the same-width contiguous subset from the concatenation
at byte granularity. ALIGN is useful for extracted data at a misaligned memory address from two aligned memory
load results. ALIGN corresponds to MIPS DSP Module BALIGN.

9.4.4 Multiply and Divide Instructions

The multiply and divide instructions produce results that are the same width as their operands, using GPRs as both
input and output.

• Multiply-low instructions (MUL, MULU) produce the low 32-bits of the product.

• Multiply-high instructions (MUH, MUHU) produce the high 32-bits of the product.

Note that the low half of a product is the same for signed and unsigned 2’s-complement multiplication, but the upper
half differs, for example, MUL and MULU produce the same result, but MUH and MUHU produce different results.

• Divide instruction produce a quotient that is loaded into a single GPR destination (DIV, DIVU)

• Modulus instructions produce a remainder that is loaded into a single GPR destination (MOD, MODU)

If a full double-width product is desired for a multiplication, or both quotient and remainder are desired for a division,
the appropriate same-width instructions should be used in close proximity to permit hardware optimizations. For
example, the multiply-low instruction MULU may retain its result, to be provided to the following multiply-high
MUHU instruction.

Table 9.6 lists the same-width multiply and divide instructions.

Table 9.5 Shift Instructions

Mnemonic Instruction

ALIGN Extract byte-aligned word from concatenation of two words

BITSWAP Swap bits in every byte of word operand

Table 9.6 Multiply/Divide Instructions

Mnemonic Instruction

MUL Multiply word, Low part, signed

MUH Multiply word, High part, signed

MULU Multiply word, Low part, Unsigned

MUHU Multiply word, High part, Unsigned

9.5 Jump and Branch Instructions

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 229

9.5 Jump and Branch Instructions

Jump and branch instructions change the control flow of a program. All jump and branch instructions occur with a
delay of one instruction: that is, the instruction immediately following the jump or branch (this is known as the
instruction in the delay slot) always executes while the target instruction is being fetched from storage.

9.5.1 Overview of Jump Instructions

Subroutine calls in high-level languages are usually implemented with Jump or Jump and Link instructions, both of
which are J-type instructions. In J-type format, the 26-bit target address shifts left 2 bits and combines with the
high-order 4 bits of the current program counter to form an absolute address.

Returns, dispatches, and large cross-page jumps are usually implemented with the Jump Register or Jump and Link
Register instructions. Both are R-type instructions that take the 32-bit byte address contained in one of the general
purpose registers.

For more information about jump instructions, refer to the individual instructions in Chapter 10, “M6200 MIPS32®
Processor Core Instructions” on page 234.

9.5.2 Branch Instructions

All branch instruction target addresses are computed by adding the address of the instruction in the delay slot to the
16-bit offset (shifted left 2 bits and sign-extended to 32 bits). All branches occur with a delay of one instruction.

9.5.2.1 Compact Jump and Compact Branch Instructions

The M6200 core provides conditional and unconditional compact branches and compact jumps, shown in Table 9.7.
Conditional compact branches and jumps do not have a delay slot. but have instead a forbidden slot. Unconditional
compact branches and jumps have neither a delay slot nor a forbidden slot.

The following instructions must not be placed in either a branch delay slot or a forbidden slots: ERET, ERETNC,
DERET, WAIT, PAUSE, and any CTI, including branches and jumps,. Their occurrence is required to signal a
Reserved Instruction exception.

Table 9.7 Compact Branch and Jump Instructions

DIV Divide words, signed

MOD Modulus remainder word division, signed

DIVU Divide words, Unsigned

MODU Modulus remainder word division, Unsigned

Offset Span Mnemonic Instruction

Unconditional Branch and Call

Table 9.6 Multiply/Divide Instructions (Continued)

Mnemonic Instruction

 MIPS32® Instruction Set Architecture

230 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

26
+/-

128MB
BC Compact Branch

BALC Compact Branch And Link

Indexed Jumps (register + unscaled offset)

16 +/-32K
JIC Compact Jump Indexed

JIALC Compact Jump Indexed And Link

Compare to Zero

21 +/- 4MB
BEQZC Compact Branch if Equal to Zero

BNEZC Compact Branch if Not Equal to Zero

16
+/-

128KB

BLEZC Compact Branch if Less Than or Equal to Zero

BGEZC Compact Branch if Greater Than or Equal to Zero

BGTZC Compact Branch if Greater Than Zero

BLTZC Compact Branch if Less Than Zero

Conditional calls, compare against zero

16
+/-

128KB

BEQZALC Compact Branch if Equal to Zero, And Link

BNEZALC Compact Branch if Not Equal to Zero, And Link

BLEZALC Compact Branch if Less Than or Equal to Zero, And Link

BGEZALC Compact Branch if Greater Than or Equal to Zero, And Link

BGTZALC Compact Branch if Greater Than Zero, And Link

BLTZALC Compact Branch if Less Than Zero, And Link

Compare equality reg-reg

16
+/-

128KB
BEQC Compact Branch if Equal

BNEC Compact Branch if Not Equal

Compare signed reg-reg

16
+/-

128KB
BGEC Compact Branch if Greater than or Equal

BLTC Compact Branch if Less Than

Compare Unsigned reg-reg

16
+/-128K

B
BGEUC Compact Branch if Greater than or Equal, Unsigned

BLTUC Compact Branch if Less Than, Unsigned

Aliases Obtained by Reversing Operands

16
+/-

128KB

BLEC Compact Branch if Less Than or Equal

BGTC Compact Branch if Greater Than

BLEUC Compact Branch if Less than or Equal, Unsigned

BGTUC Compact Branch if Greater Than, Unsigned

Branch if Overflow

16
+/-128K

B
BOVC Compact Branch if Overflow (word)

BNVC Compact Branch if No overflow, word

Offset Span Mnemonic Instruction

9.6 Control Instructions

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 231

9.6 Control Instructions

Control instructions allow the software to initiate traps; they are always R-type. These instructions transfer control to
a kernel-mode software exception handler. There are two types of exceptions, conditional and unconditional. They
are caused by the following instructions:

• System call and breakpoint instructions, which cause unconditional exceptions (Table 9.8).

• Trap instructions, which cause conditional exceptions based on the result of a comparison (Table 9.9).

.

9.7 Coprocessor Instructions

CP0 instructions perform operations on the System Control Coprocessor registers to manipulate the memory manage-
ment and exception handling facilities of the processor. Refer to Chapter 10, “M6200 MIPS32® Processor Core
Instructions” on page 234 for a listing of CP0 instructions.

Table 9.8 System Call and Breakpoint Instructions

Mnemonic Instruction

BREAK Breakpoint

BREAK16 Breakpoint (16-bit Instruction Size)

SYSCALL System Call

Table 9.9 Trap-on-Condition Instructions Comparing Two Registers

Mnemonic Instruction

TEQ Trap if Equal

TGE Trap if Greater Than or Equal

TGEU Trap if Greater Than or Equal Unsigned

TLT Trap if Less Than

TLTU Trap if Less Than Unsigned

TNE Trap if Not Equal

 MIPS32® Instruction Set Architecture

232 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

9.8 Miscellaneous Instructions

9.8.1 Conditional Select Instructions

The conditional select instructions test the C- compatible zero/nonzero value of a GPR and select a GPR or 0. These
instructions are compatible with the truth values in the C language, and they have only two register inputs (the third
input, 0, is implicit). They are listed in Table 9.10.).

9.8.2 Prefetch Instruction

The PREF instruction is used to indicate that memory is likely to be used in a particular way in the near future and
should be prefetched into the cache. A hint field may indicate prefetch policies, such as which cache they are fetched
into and whether reading or writing is intended. The PREF instruction uses register+offset addressing.

9.8.3 NOP Instructions

The NOP instruction is actually encoded as an all-zero instruction. MIPS processors special-case this encoding as
performing no operation, and optimize execution of the instruction.

In addition, the SSNOP instruction takes up one issue cycle on any processor, including super-scalar implementations
of the architecture. SSNOP is treated like an ordinary NOP.

9.9 MCU ASE Instructions

The MCU ASE includes some new instructions which are particularly useful in microcontroller applications.

9.9.1 ACLR

This instruction allows a bit within an uncached I/O control register to be atomically cleared; that is, the read-modify
byte write sequence performed by this instruction cannot be interrupted.

9.9.2 ASET

This instruction allows a bit within an uncached I/O control register to be atomically set; that is, the read-modify byte
write sequence performed by this instruction cannot be interrupted.

Table 9.10 CPU Conditional Select Instructions

Mnemonic Instruction

SELEQZ Select GPR rs if GPR rt is Equal to Zero, else select 0

SELNEZ Select GPR rs if GPR rt is Not Equal to Zero, else select 0

Table 9.11 NOP Instructions

Mnemonic Instruction

NOP No Operation

SSNOP Superscalar Inhibit NOP

9.9 MCU ASE Instructions

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 233

9.9.3 IRET

This instruction can be used as a replacement for the ERET instruction when returning from an interrupt. This
instruction implements the Automated Interrupt Epilogue feature, which automates restoring some of the CP0 regis-
ters from the stack and updating the C0_Status register in preparation for returning to non-exception mode. This
instruction also implements the optional Interrupt Chaining feature, which allows a subsequent interrupt to be han-
dled without returning to non-exception mode.

9.9.4 ASET/ACLR Unique Behaviors

The ASET and ACLR instructions are atomic read-modify-write operations that typically cannot be interrupted after
the operations have begun. This causes some restrictions on the handling of various debug and asynchronous excep-
tions:

• If a data breakpoint was enabled with data-value matching, the breakpoint exception will occur prior to the read
operation, regardless of the data-value comparison result. This is preferable to the breakpoint occurring after the
write operation, when the data-value in memory has already been modified.

• If a data breakpoint was enabled with store-only matching, the breakpoint exception will occur prior to the read
operation, that is, before the write operation has begun.

• If there is a bus error, parity, or ECC exception initiated by the read or write operation, the ASET/ACLR will be
interrupted, and it the responsibility of the SOC to deactivate the bus lock initiated by the ASET/ACLR atomic
command.

Chapter 10

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 234

M6200 MIPS32® Processor Core Instructions

This chapter supplements the MIPS32® Architecture Reference Manual, Volume II with descriptions of instruction
behavior that is specific to a M6200 processor core. For complete descriptions of all instructions, refer to MIPS®
Architecture For Programmers, Volume II: The MIPS32® Instruction Set [12] and MIPS® Architecture For Pro-
grammers, Volume II: microMIPS32® Instruction Set [13].

The microMIPS instruction set is described in Chapter 11, “microMIPS32™ Instruction Set Architecture” on
page 258.

The M6200 processor core also supports the instructions in the MIPS DSP Module Revision 3. The MIPS DSP Mod-
ule Revision 3 instruction set is described in Chapter 2, “The MIPS® DSP Module” on page 34.

10.1 Understanding the Instruction Descriptions

Refer to Volume II of the MIPS32 Architecture Reference Manual for detailed information about the instruction
descriptions, namely, the instruction fields, definition of terms, and functional notation. This section provides only
basic information.

10.2 MIPS32® Instruction Set for the M6200 Core

This section provides a summary of the MIPS32 instructions for M6200 cores. microMIPS32 instructions are
described in Chapter 11, “microMIPS32™ Instruction Set Architecture” on page 258.

Table 10.1 lists all M6200 MIPS32 instructions in alphabetical order. Instructions that have implementation-depen-
dent behavior are described individually in subsequent sections; all other MIPS32 instructions are described in the
MIPS® Architecture For Programmers, Volume II: The MIPS32® Instruction Set [12] and their descriptions are not
duplicated here.

Table 10.1 MIPS32 Instruction Set

Instruction Description Function

ADD Integer Add Rd = Rs + Rt

ADDIU Unsigned Integer Add Immediate Rt = Rs + Immed

ADDIUPC Add Immediate to PC Rs = (PC + sign_extend (immediate << 2))

ADDU Unsigned Integer Add Rt = Rs + Rt

ALIGN Align Word Rd = (Rt << (8*bp)) or (rs >> (GPRLEN-8*bp))

ALUIPC Aligned Add Upper Immediate to PC -0x0FFFF & (PC + (Immediate << 16))

AND Logical AND Rd = Rs & Rt

ANDI Logical AND Immediate Rt = Rs AND Immediate

10.2 MIPS32® Instruction Set for the M6200 Core

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 235

AUI Add Immediate to Upper Bits Rt = Rs + (Immediate << 16)

AUIPC Add Upper Immediate to PC Rs = (PC + (Immediate << 16))

ACLR Atomic Bit Clear See MCU ASE Instructions

ASET Atomic Bit Set See MCU ASE Instructions

B Unconditional Branch
(Assembler idiom for: BEQ r0, r0, offset)

PC += (int)offset

BAL Branch and Link GPR[31] = PC + 8
PC += (int)offset

BALC Branch and Link Compact Procedure Call (No Delay Slot)

BC Branch Compact PC = PC + 4 + Sign_Extend (offset << 2)

BC2EQZ, BC2NEZ Branch on COP2 Equal/Not Equal to Zero If COP2 Condition = 0 Then PC += (int)offset
If COP2 Condition  0 Then PC += (int)offset

BEQ Branch On Equal If Rs = Rt Then PC += (int)offset

BGEZ Branch on Greater Than or Equal To Zero If !Rs[31] Then PC += (int)offset

B(LE,GE,GT,LT,EQ,NE)Z
ALC

Compact Zero-Compare and Branch-and-Link If Condition (Rt) Then PC += (int)offset

B<cond>C Compact Compare and Branch If Condition (Rs and/or Rt) Then Compact Branch

BGTZ Branch on Greater Than Zero if !Rs[31] && Rs != 0 Then PC += (int)offset

BITSWAP Swap Bits in Byte Rd.Byte(i) = Reverse_Bits_in_Byte (Rt.Byte(i) for all
Bytes i

BLEZ Branch on Less Than or Equal to Zero if Rs[31] || Rs == 0 Then PC += (int)offset

BLTZ Branch on Less Than Zero if Rs[31] Then PC += (int)offset

BNE Branch on Not Equal if Rs != Rt Then PC += (int)offset

BOVC, BNVC Branch on Overflow/No Overflow, Compact Branch if/if-not NotWordValue(Rs + Rt)

BREAK Breakpoint Break Exception

CACHE Cache Operation NOP

CFC2 Move Control Word From Coprocessor 2 Rt = CCR[2, n]

CLO Count Leading Ones Rd = NumLeadingOnes(Rs)

CLZ Count Leading Zeroes Rd = NumLeadingZeroes(Rs)

COP2 Coprocessor 2 Operation See Coprocessor 2 Description

CTC2 Move Control Word To Coprocessor 2 CCR[2, n] = Rt

DERET Return from Debug Exception PC = DEPC
Exit Debug Mode

DI Disable Interrupts Rt=Status
StatusIE=0

DIV MOD, DIVU MODU Divide Integers DIV: Rd = (Divide.signed(Rs div Rt)
MOD: Rd = Moduleo.signed(Rs mod Rt)
DIVU: Rd = (Divide.unsigned(Rs div Rt)
MODU: Rd = Moduleo.unsigned(Rs mod Rt)

EHB Execution Hazard Barrier Stall until execution hazards are cleared

Table 10.1 MIPS32 Instruction Set (Continued)

Instruction Description Function

 M6200 MIPS32® Processor Core Instructions

236 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

EI Enable Interrupts Rt=Status
StatusIE=1

ERET Return from Exception If SR[2] Then PC = ErrorEPC
Else
PC = EPC
SR[1] = 0
SR[2] = 0
LL = 0

ERETNC Exception Return No Clear If SR[2] Then PC = ErrorEPC
Else
PC = EPC
SR[1] = 0
SR[2] = 0

EXT Extract Bit Field Rt=ExtractField(Rs,msbd,lsb)

INS Insert Bit Field Rt=InsertField(Rt,Rs,msb,lsb)

IRET Return from Exception See MCU ASE Instructions

J Unconditional Jump PC = PC[31:28] || offset<<2

JAL Jump and Link GPR[31] = PC + 8
PC = PC[31:28] || offset<<2

JALR Jump and Link Register Rd = PC + 8
PC = Rs

JALR.HB Jump and Link Register with Hazard Barrier Rd = PC + 8
PC = Rs
Stall until all execution and instruction hazards are cleared

JIALC Jump Indexed and Link Compact GPR[31] = P C+ 4, PC = (Rt + Sign_extend(offset))

JIC Jump Indexed Compact PC = (Rt + Sign_extend(offset))

JR Jump Register
Assembler Idiom

PC = Rs

JR.HB Jump Register with Hazard Barrier
Assembler Idion

PC = Rs
Stall until all execution and instruction hazards are cleared

LB Load Byte Rt = (byte)Mem[Rs+offset]

LBU Unsigned Load Byte Rt = (ubyte))Mem[Rs+offset]

LH Load Halfword Rt = (half)Mem[Rs+offset]

LHU Unsigned Load Halfword Rt = (uhalf)Mem[Rs+offset]

LL Load Linked Word Rt = Mem[Rs+offset]
LL = 1
LLAdr = Rs + offset

LSA Load Scaled Address Rd = Sign_extend.32((Rs<<(sa+1)) + Rt))

LUI Load Upper Immediate
Assembler Idiom

Rt = immediate << 16

LW Load Word Rt = Mem[Rs+offset]

LWC2 Load Word To Coprocessor 2 CPR[2, n, 0] = Mem[Rs+offset]

LWPC Load Word PC-relative

Table 10.1 MIPS32 Instruction Set (Continued)

Instruction Description Function

10.2 MIPS32® Instruction Set for the M6200 Core

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 237

MFC0 Move From Coprocessor 0 Rt = CPR[0, n, sel]

MFC2 Move From Coprocessor 2 Rt = CPR[2, n, sel31 0]

MFHC0 Move From High Coprocessor 0 Rs = Mem(PC+Sign_extend(Offset <<2)

MFHC2 Move From High Word Coprocessor2 Rt= CPR[2,n,sel]63 32

MTC0 Move To Coprocessor 0 CPR[0, n, sel] = Rt

MTC2 Move To Coprocessor 2 CPR[2, n, sel]31 0 = Rt

MTCH0 Move To High Word Coprocessor 0 CPR[2, n, sel]63 32 = Rt

MTHC2 Move To High Word Coprocessor 2 CPR[2, n, sel]63 32 = Rt

MUL, MUH, MULU,
MUHU

Multiply Integers MUL: Rd = Sign_extend.32(lo_word(multiply.signed(Rs x
Rt)))
MUH: Rd = Sign_extend.32(hi_word(multiply.signed(Rs
x Rt)))
MULU: Rd = Sign_extend.32(lo_word(multi-
ply.unsigned(Rs x Rt)))
MUHU: Rd = Sign_extend.32(hi_word(multi-
ply.unsigned(Rs x Rt)))

NAL No-op and Link GPR[31] = PC + 8

NOP No Operation
(Assembler idiom for: SLL r0, r0, r0)

No Operation

NOR Logical NOR Rd = ~(Rs | Rt)

OR Logical OR Rd = Rs | Rt

ORI Logical OR Immediate Rt = Rs | Immed

PAUSE Wait For LLBit to Clear No Operation

PREF Prefetch NOP

RDHWR Read Hardware Register Rt=HWR[Rd]

RDPGPR Read GPR from Previous Shadow Set Rd=SGPR[SRSCtlPSS, Rt]

ROTR Rotate Word Right Rd = Rtsa-1 0 || Rt31 sa

ROTRV Rotate Word Right Variable Rd = RtRs-1 0 || Rt31 Rs

SB Store Byte (byte)Mem[Rs+offset] = Rt

SC Store Conditional Word if LL 1
mem[Rxoffs] = Rt

Rt = LL

SDBBP Software Debug Breakpoint Trap to SW Debug Handler

SEB Sign Extend Byte Rd=SignExtend(Rt7 0)

SEH Sign Extend Half Rd=SignExtend(Rt15 0)

SELEQZ, SELNEZ Select Integer GPR Value or Zero SELEQZ: Rd = Rd := Rt = 0?0 Rd:0
SELNEZ: Rd = Rt !:= 0?Rs : 0

SH Store Halfword (half)Mem[Rs+offset] = Rt

SIGRIE Signal Reserved Instruction Exception SignalException(ReservedInstruction

SLL Shift Left Logical Rd = Rt << sa

Table 10.1 MIPS32 Instruction Set (Continued)

Instruction Description Function

 M6200 MIPS32® Processor Core Instructions

238 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

SLLV Shift Left Logical Variable Rd = Rt << Rs[4:0]

SLT Set on Less Than if (int)Rs < (int)Rt
Rd = 1

else
Rd = 0

SLTI Set on Less Than Immediate if (int)Rs < (int)Immed
Rt = 1

else
Rt = 0

SLTIU Set on Less Than Immediate Unsigned if (uns)Rs < (uns)Immed
Rt = 1

else
Rt = 0

SLTU Set on Less Than Unsigned if (uns)Rs < (uns)Immed
Rd = 1

else
Rd = 0

SRA Shift Right Arithmetic Rd = (int)Rt >> sa

SRAV Shift Right Arithmetic Variable Rd = (int)Rt >> Rs[4:0]

SRL Shift Right Logical Rd = (uns)Rt >> sa

SRLV Shift Right Logical Variable Rd = (uns)Rt >> Rs[4:0]

SSNOP Superscalar Inhibit No Operation Nop

SUB Integer Subtract Rt = (int)Rs - (int)Rd

SUBU Unsigned Subtract Rt = (uns)Rs - (uns)Rd

SW Store Word Mem[Rs+offset] = Rt

SWC2 Store Word From Coprocessor 2 Mem[Rs+offset] = CPR[2, n, 0]

SYNC Synchronize See SYNC instruction below.

SYNCI Synchronize Caches to Make Instruction Writes
Effective

NOP

SYSCALL System Call SystemCallException

TEQ Trap if Equal if Rs == Rt
TrapException

TGE Trap if Greater Than or Equal if (int)Rs >= (int)Rt
TrapException

TGEU Trap if Greater Than or Equal Unsigned if (uns)Rs >= (uns)Rt
TrapException

TLT Trap if Less Than if (int)Rs < (int)Rt
TrapException

TLTU Trap if Less Than Unsigned if (uns)Rs < (uns)Rt
TrapException

TNE Trap if Not Equal if Rs != Rt
TrapException

WAIT Wait for Interrupts Stall until interrupt occurs

Table 10.1 MIPS32 Instruction Set (Continued)

Instruction Description Function

10.2 MIPS32® Instruction Set for the M6200 Core

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 239

WRPGPR Write to GPR in Previous Shadow Set SGPR[SRSCtlPSS,Rd]=Rt

WSBH Word Swap Bytes within Halfwords Rd=SwapBytesWithinHalfs(Rt)

XOR Exclusive OR Rd = Rs XOR Rt

XORI Exclusive OR Immediate Rt = Rs XOR (uns)Immed

Table 10.1 MIPS32 Instruction Set (Continued)

Instruction Description Function

Atomically Clear Bit within Byte ACLR

240 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

Format: ACLR bit, offset(base) MCU ASE

Purpose: Atomically Clear Bit within Byte

Description: Disable interrupts; temp  memory[GPR[base] + offset]; temp  (temp and ~(1
<< bit)) ; memory[GPR[base] + offset]  temp; Enable Interrupts

The contents of the 8-bit byte at the memory location specified by the effective address are fetched. The specified bit
within the byte is cleared to zero. The modified byte is stored in memory at the location specified by the effective
address. The 12-bit signed offset is added to the contents of GPR base to form the effective address. The read-modify-
write sequence cannot be interrupted.

Transactions with locking semantics occur in some memory interconnects/busses. It is implementation-specific
whether this instruction uses such locking transactions.

The execution of this instruction may be disabled by an externally controlled pin, such that attempted execution of
this instruction causes a Reserved Instruction exception

Restrictions:

The operation of the processor is UNDEFINED if an ACLR instruction is executed in the delay slot of a branch or
jump instruction.

Operation:

vAddr  sign_extend(offset)  GPR[base]
(pAddr, CCA)  AddressTranslation (vAddr, DATA, STORE)
pAddr  pAddrPSIZE-1..2 || (pAddr1..0 xor ReverseEndian

2)
TempIE  StatusIE
StatusIE  0
memword  LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte  vAddr1..0 xor BigEndianCPU

2

temp  memword7+8*byte..8*byte
temp  temp and ((1 || 0bit) xor 0xFF))
dataword  temp || 08*byte

StoreMemory (CCA, BYTE, dataword, pAddr, vAddr, DATA)
StatusIE  TempIE

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error

Programming Notes:

ACLR is treated as a load operation followed by a store operation. All exceptions including TLB, Address Error,
Debug Breakpoint, Watch, and Memory Protection exceptions that can be ta ken on either or both memory access
operations must be taken.

31 26 25 21 20 16 15 14 12 11 4 3 0

REGIMM
000001

base ATOMIC
00111

0 Bit offset

6 5 5 1 3 12

Atomically Set Bit within Byte ASET

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 241

Format: ASET bit, offset(base) MIPS32 and MCU ASE

Purpose: Atomically Set Bit within Byte

Description: Disable interrupts;temp  memory[GPR[base] + offset]; temp  (temp or (1 <<
bit)) ; memory[GPR[base] + offset]  temp; Enable Interrupts

The contents of the 8-bit byte at the memory location specified by the effective address are fetched. The specified bit
within the byte is set to one. The modified byte is stored in memory at the location specified by the effective address.
The 12-bit signed offset is added to the contents of GPR base to form the ef fective address. The read-modify-write
sequence cannot be interrupted.

Transactions with locking semantics occur in some memory interconnects/busses. It is implementation-specific
whether this instruction uses such locking transactions.

The execution of this instruction may be disabled by an externally controlled pin, such that attempted execution of
this instruction causes a Reserved Instruction exception

Restrictions:

The operation of the processor is UNDEFINED if an ASET instruction is executed in the delay slot of a branch or
jump instruction.

Operation:

vAddr  sign_extend(offset)  GPR[base]
(pAddr, CCA)  AddressTranslation (vAddr, DATA, STORE)
pAddr  pAddrPSIZE-1..2 || (pAddr1..0 xor ReverseEndian

2)
TempIE  StatusIE
StatusIE  0
memword  LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte  vAddr1..0 xor BigEndianCPU

2

temp  memword7+8*byte..8*byte
temp  temp or (1 || 0bit)
dataword  temp || 08*byte

StoreMemory (CCA, BYTE, dataword, pAddr, vAddr, DATA)
StatusIE  TempIE

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error

Programming Notes:

ASET is treated as a load operati on followed by a sto re operation. All exceptions including TLB, Address Error,
Debug Breakpoint, Watch, and Memory Protection exceptions that can be ta ken on either or both memory access
operations must be taken.

31 26 25 21 20 16 15 14 12 11 4 3 0

REGIMM
000001

base ATOMIC
00111

1 Bit offset

6 5 5 1 3 12

Atomically Clear Bit within Byte ACLR

242 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

Format: ACLR bit, offset(base) microMIPS and MCU ASE

Purpose: Atomically Clear Bit within Byte

Description: Disable interrupts; temp  memory[GPR[base] + offset]; temp  (temp and ~(1
<< bit)) ; memory[GPR[base] + offset]  temp; Enable Interrupts

The contents of the byte at the memo ry location specified by the effective address are fetched. The specified bit
within the byte is cleared to zero. The modified byte is stored in memory at the location specified by the effective
address. The 12-bit signed offset is added to the contents of GPR base to form the effective address. The read-modify-
write sequence cannot be interrupted.

Transactions with locking semantics occur in some memory interconnects/busses. It is implementation-specific
whether this instruction uses such locking transactions.

The execution of this instruction may be disabled by an externally controlled pin, such that attempted execution of
this instruction causes a Reserved Instruction exception.

Restrictions:

The operation of the processor is UNDEFINED if an ACLR instruction is executed in the delay slot of a branch or
jump instruction.

Operation:

vAddr  sign_extend(offset)  GPR[base]
(pAddr, CCA)  AddressTranslation (vAddr, DATA, STORE)
pAddr  pAddrPSIZE-1..2 || (pAddr1..0 xor ReverseEndian

2)
TempIE  StatusIE
StatusIE  0
memword  LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte  vAddr1..0 xor BigEndianCPU

2

temp  memword7+8*byte..8*byte
temp  temp and ((1 || 0bit) xor 0xFF))
dataword  temp || 08*byte

StoreMemory (CCA, BYTE, dataword, pAddr, vAddr, DATA)
StatusIE  TempIE

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error

Programming Notes:

ACLR is treated as a load operation followed by a store operation. All exceptions including TLB, Address Error,
Debug Breakpoint, Watch, and Memory Protection exceptions that can be ta ken on either or both memory access
operations must be taken.

31 26 25 24 23 21 20 16 15 12 11 0

POOL32B
001000

A0
0

bit base
ACLR
1011 offset

6 2 3 5 4 12

Atomically Set Bit within Byte I

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 243

Format: ASET bit, offset(base) microMIPS AND MCU ASE

Purpose: Atomically Set Bit within Byte

Description: Disable interrupts;temp  memory[GPR[base] + offset]; temp  (temp or (1 <<
bit)) ; memory[GPR[base] + offset]  temp; Enable Interrupts

The contents of the byte at the memo ry location specified by the effective address are fetched. The specified bit
within the byte is set to one. The modified byte is stored in memory at the location specified by the effective address.
The 12-bit signed offset is added to the contents of GPR base to form the ef fective address. The read-modify-write
sequence cannot be interrupted.

Transactions with locking semantics occur in some memory interconnects/busses. It is implementation-specific
whether this instruction uses such locking transactions.

The execution of this instruction may be disabled by an externally controlled pin, such that attempted execution of
this instruction causes a Reserved Instruction exception.

Restrictions:

The operation of the processor is UNDEFINED if an ASET instruction is executed in the delay slot of a branch or
jump instruction.

Operation:

vAddr  sign_extend(offset)  GPR[base]
(pAddr, CCA)  AddressTranslation (vAddr, DATA, STORE)
pAddr  pAddrPSIZE-1..2 || (pAddr1..0 xor ReverseEndian

2)
TempIE  StatusIE
StatusIE  0
memword  LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte  vAddr1..0 xor BigEndianCPU

2

temp  memword7+8*byte..8*byte
temp  temp or (1 || 0bit)
dataword  temp || 08*byte

StoreMemory (CCA, BYTE, dataword, pAddr, vAddr, DATA)
StatusIE  TempIE

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error

Programming Notes:

ASET is treated as a load operati on followed by a sto re operation. All exceptions including TLB, Address Error,
Debug Breakpoint, Watch, and Memory Protection exceptions that can be ta ken on either or both memory access
operations must be taken.

31 26 25 24 23 21 20 16 15 12 11 0

POOL32B
001000

A0
0

bit base
ASET
0011 offset

6 2 3 5 4 12

Interrupt Return with Automated Interrupt Epilogue IRET

244 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

Format: IRET MIPS32 and MCU ASE

Purpose: Interrupt Return with Automated Interrupt Epilogue

Optionally jump directly to another interrupt vector without returning to original return address.

Description:

IRET is used to automate some of the operations that are required when returning from an interrupt handler. It can be
used in place of the ERET instruction at the end of interrupt handlers. The IRET instruction is only appropriate when
using Shadow Register Sets and EIC Interrupt mode. The au tomated operations of this instruction can be used to
reverse the effects of the automated operations of the Auto-Prologue feature.

If the EIC mode of interrupts and the Interrupt Chaining feature are used, the IRET instruction can be used to shorten
the time between returning from the current interrupt handler and handling the next requested interrupt.

If Automated Prologue feature is disabled, then IRET behaves exactly as ERET.

If either StatusERL or StatusBEV bits are set, then IRET behaves exactly as ERET.

Release 6: IRET is only executable in non-user modes. Attempting to execute IRET in user mode will cause a Copro-
cessor Unusable exception.

If Interrupt Chaining is disabled:

• Interrupts are disabled. CP0 Status, SRSCtl, and EPC registers are restored from the stack. GPR 29 is incre-
mented for the stack frame size. IRET then clears execution and instruction hazards, conditionally restores
SRSCtlCSS from SRSCtlPSS, and returns to the interrupted instruction pointed by the EPC register at the
completion of interrupt processing.

If Interrupt Chaining is enabled:

• Interrupts are disabled. CP0 Status register is restored from the stack. The priority output of the External
Interrupt Controller is compared with the IPL field of the Status register.

• If StatusIPL has a higher priority than that of the External Interrupt Controller value:

CP0 SRSCtl and EPC registers are restored from the stack. GPR 29 is incremented for the stack frame size.
IRET then clears execution and instruction hazards, conditionally restores SRSCtlCSS from SRSCtlPSS, and
returns to the interrupted instruction pointed by the EPC register at the completion of interrupt processing.

• If StatusIPL field has a lower priority than that of the External Interrupt Controller value:

The value of GPR 29 is first saved to a temporary register then GPR 29 is incremented for the stack frame
size. The EIC is signalled that the next pending interrupt has been accepted. This signalling will update the
CauseRIPL and SRSCtlEICSS fields from the EIC output values. The SRSCtlEICSS field is copied to the
SRSCtlCSS field while the CauseRIPL field is copied to the StatusIPL field. The saved temporary register is
copied to the GPR 29 of the current SRS. The KSU, ERL and EXL fields of the Status register are optionally
set to zero. No barrier for execution hazards nor instruction hazards is created. IRET finishes by jumping to
the interrupt vector driven by the EIC.

31 26 25 6 5 0

CP0
010000

C0
1

0
00 0000 0000 0000 0000

IRET
111000

6 1 20 6

Interrupt Return with Automated Interrupt Epilogue IIRET

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 245

IRET does not execute the next instruction (i.e., it has no delay slot).

Restrictions:

In pre-Release 6, the operation of the processor is UNDEFINED if IRET is executed in the delay slot of a branch or
jump instruction.

Release 6: Implementations are required to signal a Reserved Instruction Exception if IRET is executed in the delay
slot or forbidden slot of a branch or jump instruction.

The operation of the p rocessor is UNDEFINED if an IRET is executed when eith er Shadow Register Sets are not
enabled or when EIC interrupt mode is not enabled.

An IRET placed between an LL and SC instruction will always cause the SC to fail.

The effective addresses used for the stack memory transactions must be naturally-aligned. If either of the two leas t-
significant bits of the address is non-zero, an Address Error exception occurs.

IRET implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0 state
changes. The effects of this barrier are seen starting with the instruction fetch and decode of the instruction at the PC
to which the IRET returns.

The stack memory transactions behave as individual LW operations with respect to exception reporting. BadVAddr
would report the faulting addr ess for unaligned access and the faulting word address for un privileged access, TLB
Refill and TLB Invalid exceptions. For TLB exceptions, the faulting word address would be reflected in the Context,
and EntryHi registers. The CacheError register would reflect the faulting word address for SRAM Interface Parity or
ECC Errors.

Operation:

if ((IntCtlAPE == 0) | (StatusERL == 1) | (StatusBEV== 1))
Act as ERET // read Operation section of ERET description

else
if (ISAMode)

EPC  PC31..1 || 1 // in case of memory exception
else

EPC  PC // in case of memory exception
endif
temp  0x4 + GPR[29]
tempStatus  LoadStackWord(temp)
ClearHazards()
if ((IntCtlICE == 0) | ((IntCtlICE == 1) &
(tempStatusIPL > EICRIPL)))

temp  0x8 + GPR[29]
tempSRSCtl  LoadStackWord(temp)
temp  0x0 + GPR[29]
tempEPC  LoadStackWord(temp)

endif
Status  tempStatus
if ((IntCtlICE == 0) | ((IntCtlICE == 1) &

(tempStatusIPL > EICRIPL)))
GPR[29]  GPR[29] + DecodedValue(IntCtlStkDec)
SRSCtl  tempSRSCtl
EPC  tempEPC
temp  EPC
StatusEXL  0
if (ArchitectureRevision � 2) and (SRSCtlHSS  0)
and (StatusBEV = 0) then

SRSCtlCSS  SRSCtlPSS
endif

Interrupt Return with Automated Interrupt Epilogue IRET

246 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

if IsMicroMIPSImplemented() then
PC  temp31..1 || 0
ISAMode  temp0

else
PC  temp

endif
LLbit  0
CauseIC  0
ClearHazards()

else
Signal_EIC_for_Next_Interrupt()
(wait for EIC outputs to update)
CauseRIPL  EICRIPL
SRSCtlEICSS  EICSS
temp29  GPR[29]
GPR[29]  GPR[29] + DecodedValue(IntCtlStkDec)
StatusIPL  CauseRIPL
SRSCtlCSS  SRSCtlEICSS
NewShadowSet  SRSCtlEICSS
GPR[29]  temp29
if (IntCtlClrEXL == 1)

StatusEXL  0
StatusKSU  0

endif
CauseIC  1
ClearHazards()
PC  CalcIntrptAddress()

endif
endif

function LoadStackWord(vaddr)
if vAddr1..0  0

2 then
SignalException(AddressError)

endif
(pAddr, CCA)  AddressTranslation (vAddr, DATA, LOAD)
memword  LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
LoadStackWord  memword

endfunction LoadStackWord

function CalcIntrptAddress()
if StatusBEV = 1

vectorBase  0xBFC0.0200
else

if (ArchitectureRevision � 2)
vectorBase  EBase31..12  0

11)
else

vectorBase  0x8000.0000
endif

endif
if (CauseIV = 0)

vectorOffset = 0x180
else

if (StatusBEV = 1) or (IntCtlVS = 0)
vectorOffset = 0x200

else

Interrupt Return with Automated Interrupt Epilogue IIRET

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 247

if (Config3VEIC = 1 and EIC_Option=1)
VectorNum = CauseRIPL

elseif (Config3VEIC = 1 and EIC_Option=2)
VectorNum = EIC_VectorNum

elseif (Config3VEIC = 0)
VectorNum = VIntPriorityEncoder()

endif
if (Config3VEIC = 1 and EIC_Option=3)

vectorOffset = EIC_VectorOffset
else

vectorOffset = 0x200 + (VectorNum x (IntCtlVS  0
5))

endif
endif

endif
CalcIntrptAddress = vectorBase | vectorOffset

endfunction CalcIntrptAddress

Exceptions:
Coprocessor Unusable Exception, Reserved Instruction Exception, TLB Refill, TLB Invalid, Address Error,
SRAM Interface Parity or ECC Error, Bus Error Exceptions

Interrupt Return with Automated Interrupt Epilogue IRET

248 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

Format: IRET microMIPS and MCU ASE

Purpose: Interrupt Return with Automated Interrupt Epilogue

Optionally jump directly to another interrupt vector without returning to original return address.

Description:

IRET automates some of the operations that are required when returning from an interrupt handler and can be used in
place of the ERET instruction at the end of interrupt handlers. IRET is only appropriate when using Shadow Register
Sets and the EIC Interrupt mode. The automated operations of this instruction can be used to reverse the effects of the
automated operations of the Auto-Prologue feature.

If the EIC interrupt mode and the Interrupt Chaining feature are used, the IRET instruction can be used to shorten the
time between returning from the current interrupt handler and handling the next requested interrupt.

If the Automated Prologue feature is disabled, then IRET behaves exactly like ERET.

If either the StatusERL or StatusBEV bits are set, then IRET behaves exactly like ERET.

Release 6: IRET is only executable in non-user modes. Attempting to execute IRET in user mode will cause a Copro-
cessor Unusable exception.

If Interrupt Chaining is disabled:

• Interrupts are disabled. CP0 Status, SRSCtl, and EPC registers are restored from the stack. GPR 29 is incre-
mented for the stack frame size. IRET then clears execution and instruction hazards, conditionally restores
SRSCtlCSS from SRSCtlPSS, and returns at the completion of interrupt processing to the interrupted instruction
pointed to by the EPC register.

If Interrupt Chaining is enabled:

• Interrupts are disabled. CP0 Status register is restored from the stack. The priority output of the External Inter-
rupt Controller is compared with the IPL field of the Status register.

• If StatusIPL has a higher priority than the External Interrupt Controller value:

CP0 SRSCtl and EPC registers are restored from the stack. GPR 29 is incremented for the stack frame size.
IRET then clears execution and instruction hazards, conditionally restores SRSCtlCSS from SRSCtlPSS, and
returns to the interrupted instruction pointed to by the EPC register at the completion of interrupt processing.

• If StatusIPL has a lower priority than the External Interrupt Controller value:

The value of GPR 29 is first saved to a temporary register and then GPR 29 is incremented for the stack
frame size. The EIC is signalled that the next pending interrupt has been accepted. This signalling will
update the CauseRIPL and SRSCtlEICSS fields from the EIC output values. The SRSCtlEICSS field is copied to
the SRSCtlCSS field, while the CauseRIPL field is copied to the StatusIPL field. The saved temporary register
is copied to the GPR 29 of the current SRS. The KSU and EXL fields of the Status register are optionally set
to zero. No barrier for execution hazards or instruction hazards is created. IRET finishes by jumping to the
interrupt vector driven by the EIC.

31 26 25 6 5 0

POOL32A
000000 000 0000 0011 0100 1101 POOL32AXf

111100
6 20 6

Interrupt Return with Automated Interrupt Epilogue IIRET

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 249

IRET does not execute the next instruction (i.e., it has no delay slot).

Restrictions:

In pre-Release 6, the operation of the processor is UNDEFINED if IRET is executed in the delay slot of a branch or
jump instruction.

Release 6: Implementations are required to signal a Reserved Instruction Exception if IRET is executed in the delay
slot or forbidden slot of a branch or jump instruction.

The operation of the processor is UNDEFINED if IRET is executed when either Shadow Register Sets are not
enabled, or the EIC interrupt mode is not enabled.

An IRET placed between an LL and SC instruction will always cause the SC to fail.

The effective addresses used for stack transactions must be naturally-aligned. If either of the two least-significant bits
of the address is non-zero, an Address Error exception occurs.

IRET implements a software barrier that resolves all execution and instruction hazards created by Coprocessor 0 state
changes (refer to the SYNCI instruction for additional information on resolving instruction hazards created by writing
the instruction stream). The effects of this barrier begin with the instruction fetch and decode of the instruction at the
PC to which the IRET returns.

The stack transactions behave as individual L W operations with respect to exception reporting. BadVAddr would
report the faulting address for an unaligned access, and the faulting word address for unprivileged access, TLB Refill,
and TLB Invalid exceptions. For TLB exceptions, the faulting word address would be reflected in the Context and
EntryHi registers. The CacheError register would reflect the faulting word address for SRAMs.

Operation:

if ((IntCtlAPE == 0) | (StatusERL == 1) | (StatusBEV== 1))
Act as ERET // read Operation section of ERET description

else
if (ISAMode)

EPC  PC31..1 || 1 // in case of memory exception
else

EPC  PC // in case of memory exception
endif
temp  0x4 + GPR[29]
tempStatus  LoadStackWord(temp)
ClearHazards()
if ((IntCtlICE == 0) | ((IntCtlICE == 1) &
(tempStatusIPL > EICRIPL)))

temp  0x8 + GPR[29]
tempSRSCtl  LoadStackWord(temp)
temp  0x0 + GPR[29]
tempEPC  LoadStackWord(temp)

endif
Status  tempStatus
if ((IntCtlICE == 0) | ((IntCtlICE == 1) &

(tempStatusIPL > EICRIPL)))
GPR[29]  GPR[29] + DecodedValue(IntCtlStkDec)
SRSCtl  tempSRSCtl
EPC  tempEPC
temp  EPC
StatusEXL  0
if (ArchitectureRevision � 2) and (SRSCtlHSS  0) and (StatusBEV = 0) then

SRSCtlCSS  SRSCtlPSS
endif
if IsMicroMIPSImplemented() then

Interrupt Return with Automated Interrupt Epilogue IRET

250 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

PC  temp31..1 || 0
ISAMode  temp0

else
PC  temp

endif
LLbit  0
CauseIC  0
ClearHazards()

else
Signal_EIC_for_Next_Interrupt()
(wait for EIC outputs to update)
CauseRIPL  EICRIPL
SRSCtlEICSS  EICSS
temp29  GPR[29]
GPR[29]  GPR[29] + DecodedValue(IntCtlStkDec)
StatusIPL  CauseRIPL
SRSCtlCSS  SRSCtlEICSS
NewShadowSet  SRSCtlEICSS
GPR[29]  temp29
if (IntCtlClrEXL == 1)

StatusEXL  0
StatusKSU  0

endif
CauseIC  1
ClearHazards()
PC  CalcIntrptAddress()

endif
endif

function LoadStackWord(vaddr)
if vAddr1..0  0

2 then
SignalException(AddressError)

endif
(pAddr, CCA)  AddressTranslation (vAddr, DATA, LOAD)
memword  LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
LoadStackWord  memword

endfunction LoadStackWord

function CalcIntrptAddress()
if StatusBEV = 1

vectorBase  0xBFC0.0200
else

if (ArchitectureRevision � 2)
vectorBase  EBase31..12  0

11)
else

vectorBase  0x8000.0000
endif

endif
if (CauseIV = 0)

vectorOffset = 0x180
else

if (StatusBEV = 1) or (IntCtlVS = 0)
vectorOffset = 0x200

else
if (Config3VEIC = 1 and EIC_Option=1)

Interrupt Return with Automated Interrupt Epilogue IIRET

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 251

VectorNum = CauseRIPL
elseif (Config3VEIC = 1 and EIC_Option=2)

VectorNum = EIC_VectorNum
elseif (Config3VEIC = 0)

VectorNum = VIntPriorityEncoder()
endif
if (Config3VEIC = 1 and EIC_Option=3)

vectorOffset = EIC_VectorOffset
else

vectorOffset = 0x200 + (VectorNum x (IntCtlVS  0
5))

endif
endif

endif
CalcIntrptAddress = vectorBase | vectorOffset

endfunction CalcIntrptAddress

Exceptions:
Coprocessor Unusable Exception, Reserved Instruction Exception, TLB Refill, TLB Invalid, Address Error,
SRAM Interface Parity or ECC Error, Bus Error Exceptions

Load Linked Word LL

252 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

LL rt, offset(base) MIPS32

Purpose: Load Linked Word

To load a word from memory for an atomic read-modify-write

Description: GPR[rt]  memory[GPR[base] + offset]

The LL and SC instructions provide the primitives to implement atomic read-modify-write (RMW) operations for
synchronizable memory locations.

The contents of the 32-bit word at the memory location specified by the aligned effective address are fetched and
written into GPR rt. The 9-bit signed offset is added to the contents of GPR base to form an effective address.

This begins a RMW sequence on the current processor. There can be only one active RMW sequence per processor.
When an LL is executed it starts an active RMW sequence replacing any other sequence that was active. The RMW
sequence is completed by a subsequent SC instruction that either completes the RMW sequence atomically and suc-
ceeds, or does not and fails.

Executing LL on o ne processor does not cause an action tha t, by itself, causes an SC for the same block to fail on
another processor.

An execution of LL d oes not have to be followed by execution of SC; a p rogram is free t o abandon the RMW
sequence without attempting a write.

Restrictions:

The addressed location must be synchronizable by all processors and I/O devices sharing the location; if it is not, the
result in UNPREDICTABLE. Which storage is synchronizable is a function of both CPU and system implementa-
tions. See the documentation of the SC instruction for the formal definition. The addressed location may be uncached
for the M6200 core.

The effective address must be naturally-aligned. If either of the 2 least-s ignificant bits of the effective address is
non-zero, an Address Error exception occurs.

Release 6 requires that systems provide support for misaligned memory accesses for all ordinary memory reference
instructions such as LW (Load Word). However, this instruction is a special memory reference instruction for which
misaligned support is NOT provided, and for which signalling an Address Error exception on a misaligned access is
required.

Operation:

vAddr  sign_extend(offset) + GPR[base]
if vAddr1..0  02 then

SignalException(AddressError)
endif
(pAddr, CCA)  AddressTranslation (vAddr, DATA, LOAD)
memword  LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt]  memword
LLbit  1

Exceptions:

TLB Refill, TLB Invalid, Address Error, Reserved Instruction

31 26 25 21 20 16 15 7 6 5 0

SPECIAL
011111 base rt offset 0

LL
110110

6 5 5 16

Load Linked Word LL

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 253

Programming Notes:

There is no Load Linked Word Unsigned operation corresponding to Load Word Unsigned.

Implementation Notes:

An LL on one processor must not take action that, by itself, causes an SC for the same block on another processor to
fail. If an implementation depends on retaining the data in the cache during the RMW sequence, cache misses caused
by LL must not fetch data in the exclusive state, which removes it from the cache if it were present in another cache.

Synchronize Shared Memory SYNC

254 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

SYNC (stype = 0 implied) MIPS32

Purpose: Synchronize Shared Memory

To order loads and stores.

Description:

Simple Description:

• SYNC affects only uncached and cached coherent loads and stores. The loads and stores that occur before the
SYNC must be completed before the loads and stores after the SYNC are allowed to start.

• Loads are completed when the destination register is written. Stores are completed when the stored value is visi-
ble to every other processor in the system.

• SYNC is required, potentially in conjunction with EHB, to guarantee that memory reference results are visible
across operating mode changes. For example, a SYNC is required on entry to and exit from Debug Mode to guar-
antee that memory affects are handled correctly.

Detailed Description:

• SYNC does not guarantee the order in which instruction fetches are performed. The stype values 1-31 are
reserved for future extensions to the architecture. A value of zero will always be defined such that it performs all
defined synchronization operations. Non-zero values may be defined to remove some synchronization opera-
tions. As such, software should never use a non-zero value of the stype field, as this may inadvertently cause
future failures if non-zero values remove synchronization operations.

• The SYNC instruction is externalized on the SRAM interface of the M6200 core. External logic can use this
information in a system-dependent manner to enforce memory ordering between various memory elements in the
system.

Restrictions:

The effect of SYNC on the global order of loads and stores for memory access types other than uncached and cached
coherent is UNPREDICTABLE.

Operation:

SyncOperation(stype)

Exceptions:

None

31 26 25 21 20 16 15 11 10 6 5 0

SPECIAL
000000

0
00 0000 0000 0000 0 stype SYNC

001111
6 15 5 6

Store Conditional Word SC

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 255

SC rt, offset(base) MIPS32

Purpose: Store Conditional Word

To store a word to memory to complete an atomic read-modify-write

Description: if atomic_update then memory[GPR[base] + offset]  GPR[rt], GPR[rt]  1 else
GPR[rt]  0

The LL and SC instructions provide primitives to implement atomic read-modify-write (RMW) operations for syn-
chronizable memory locations.

The32-bit word in GPR rt is conditionally stored in memory at the location specified by the aligned effective address.
The 16-bit signed offset is added to the contents of GPR base to form an effective address.

The SC completes the RMW sequence begun by the preceding LL instruction executed on the processor. To complete
the RMW sequence atomically, the following occur:

• The32-bit word of GPR rt is stored into memory at the location specified by the aligned effective address.

• A 1, indicating success, is written into GPR rt.

Otherwise, memory is not modified and a 0, indicating failure, is written into GPR rt. On the M6200 core, the SRAM
interface supports a lock protocol and the success or failure can be indicated by external hardware.

If the following event occurs between the execution of LL and SC, the SC fails:

• An ERET instruction is executed.

If either of the following events occurs between the execution of LL and SC, the SC may succeed or it may fail; the
success or failure is not predictable. Portable programs should not cause one of these events.

• A memory access instruction (load, store, or prefetch) is executed on the processor executing the LL/SC.

• The instructions executed starting with the LL and ending with the SC do not lie in a 2048-byte contiguous
region of virtual memory. (The region does not have to be aligned, other than the alignment required for instruc-
tion words.)

The following conditions must be true or the result of the SC is UNPREDICTABLE:

• Execution of SC must have been preceded by execution of an LL instruction.

• An RMW sequence executed without intervening events that would cause the SC to fail must use the same
address in the LL and SC. The address is the same if the virtual address, physical address, and cache-coherence
algorithm are identical.

Restrictions:

The effective address must be naturally-aligned. If either of the 2 least-significant bits of the address is non-zero, an
Address Error exception occurs.

Release 6 requires systems to provide support for misaligned memory access es for all ordinary memory reference
instructions such as LW (Load Word). However, this instruction is a special memory reference instruction for which

31 26 25 21 20 16 15 7 6 5 0

SPRCIAL3
0111111 base rt offset 0

SC
100110

6 5 5 16 1 6

Store Conditional Word SC

256 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

misaligned support is NOT provided, and for which signalling an exception (Address Error) on a misaligned access is
required.

Operation:

vAddr  sign_extend(offset) + GPR[base]
if vAddr1..0  02 then

SignalException(AddressError)
endif
(pAddr, CCA)  AddressTranslation (vAddr, DATA, STORE)
dataword  GPR[rt]
if LLbit then

StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)
endif
GPR[rt]  031 || LLbit

Exceptions:

TLB Refill, TLB Invalid, TLB Modified, Address Error

Programming Notes:

LL and SC are used to atomically update memory locations, as shown below.

L1:
LL T1, (T0) # load counter
ADDI T2, T1, 1 # increment
SC T2, (T0) # try to store, checking for atomicity
BEQ T2, 0, L1 # if not atomic (0), try again
NOP # branch-delay slot

Exceptions between the LL and SC caus e SC to fail, so persistent exceptions must be avoided. Some examples of
these are arithmetic operations that trap, system calls, and floating point operations that trap or require software emu-
lation assistance.

LL and SC function on a single processor for cached noncoherent memory so that parallel programs can be run on
uniprocessor systems that do not support cached coherent memory access types.

Implementation Notes:

The block of memory that is locked for LL/SC is typically the largest cache line in use.

Enter Standby Mode WAIT

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 257

WAIT MIPS32

Purpose: Enter Standby Mode

Wait for Event

Description:

The WAIT instruction forces the core into low power mode. The pipeline is stalled and when all external requests are
completed, the processor’s main clock is sto pped. The p rocessor will restart when rese t (SI_WarmResetN or
SI_ColdResetN) is signaled, or a non-masked interrupt is taken (SI_NMI, SI_Int, or EJ_DINT). Note that theM6200
core does not use the code field in this instruction.

If the pipeline restarts as the result of an enabled interrupt, that interrupt is taken between the WAIT instruction and
the following instruction (EPC for the interrupt points at the instruction following the WAIT instruction).

Restrictions:

If access to Coprocessor 0 is not enabled, a Coprocessor Unusable Exception is signaled.

Release 6 implementations are required to signal a Reserved Instruction Exception if a WAIT instruction is encoun-
tered in the delay slot or forbidden slot of a branch or jump instruction.

Operation:

I: if IsCoprocessorEnabled(0) then
Enter lower power mode

else
SignalException(CoprocessorUnusable, 0)

endif
I+1:/* Potential interrupt taken here */

Exceptions:

Coprocessor Unusable Exception

31 26 25 24 6 5 0

CP0
010000

CO
1 Implementation-Dependent Code WAIT

100000
6 1 19 6

Chapter 11

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 258

microMIPS32™ Instruction Set Architecture

The M6200 core supports the microMIPS32 ISA, which contains all MIPS32 ISA instructions in a new 32-bit encod-
ing scheme, with some of the most commonly used instructions also available in 16-bit encoded format. This ISA
improves code density through the additional 16-bit instructions, while maintaining a performance similar to MIPS32
mode. In microMIPS mode, 16-bit or 32-bit instructions will be fetched and recoded to legacy MIPS32 instruction
opcodes in the pipeline’s I stage, so that the M6200 core can have the same microarchitecture. Because the micro-
MIPS instruction stream can be intermixed with 16-bit halfword or 32-bit word size instructions on halfword or word
boundaries, additional logic is in place to address the word misalignment issues, thus minimizing performance loss.

The microMIPS™ architecture minimizes the code footprint of applications, thus reducing the cost of memory, which
is particularly high for embedded memory. Customers can generate best results without spending time to profile its
application. The smaller code footprint typically leads to reduced power consumption per executed task because of
the smaller number of memory accesses.

11.1 ISA Modes

The ISA mode in which the processor is executing is determined by the single-bit ISA Mode register. An ISA Mode
bit value of zero selects MIPS32, and a value of 1 selects microMIPS32 mode. The ISA Mode value is not directly
visible to user software. Its value is automatically saved to any GPR used as a jump target address, such as GPR31
when written by a JAL instruction, and saved in the source register of a jump instruction.

The ISA mode following reset is determined by the setting of the Config3ISA register field, which is a read-only field
set by a hardware signal external to the processor core.

The ISA mode of an exception handler is determined by the setting of the Config3ISAOnExc register field (bit 16). The
Config3ISAOnExc register field is writable by software and has a reset value that is set by a hardware signal external to
the processor core. This register field allows privileged software to change the ISA mode to be used for subsequent
exceptions. All exception types whose vectors are offsets of the EBase register have this capability.

The selected ISA mode of a debug exception is determined by the setting of the ISAonDebug register field in the OCI
CONTROL Register. This register field is writable by probe software and has a reset value that is set by a hardware
signal external to the processor core.

11.2 Mode Switch

Mode switching between MIPS and microMIPS uses the Jump-and-Link-Register and Jump-Register instructions.
These instructions interpret bit 0 of the source registers as the target ISA mode and set the ISA Mode bit to its con-
tents.

When exceptions or interrupts occur, the ISA Mode bit is saved in bit 0 of the EPC, DEPC, or ErrorEPC. The ISA
Mode bit is then set according to the Config3ISA register field. On return from an exception, the processor loads the
saved ISA Mode bit from either EPC, DEPC, or ErrorEPC.

11.3 microMIPS Instructions

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 259

11.3 microMIPS Instructions

The reader is referred to the MIPS® Architecture Reference Manual Volume II-B: microMIPS32™ Instruction Set
[11] for the complete description of all microMIPS instructions.

 microMIPS32™ Instruction Set Architecture

260 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

Appendix A

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 261

References

This appendix lists other publications available from MIPS Technologies, Inc. that are referenced in this document.
These documents may be included in the $MIPS_PROJECT/doc area of a typical M6200 soft or hard core release,
or in some cases may be available on the MIPS web site http://www.mips.com.

1. MIPS32® M6200 Processor Core Family Data Sheet
MIPS Document: MD01092

2. MIPS32® M6200 Processor Core Family Integrator’s Guide
MIPS Document: MD01094

3. MIPS32® M6200 Processor Core Family Getting Started Guide
MIPS Document: MD01110

4. Security Features of the M6200 Processor Core Family
MIPS Document: MD01058

5. MIPS32® Interrupt Controller User's Guide
MIPS Document: MD01146

6. MIPS® Debug Hub Technical Reference Manual
MIPS Document: MD01070

7. MIPS® iFlowtrace™ Architecture Specification
MIPS Document: MD00526

8. MIPS® Architecture For Programmers, Volume I: Introduction to the MIPS32® Architecture
MIPS Document: MD0082

9. MIPS® Architecture For Programmers, Volume I: Introduction to the microMIPS32™ Architecture
MIPS Document: MD0741

10. MIPS® Architecture For Programmers, Volume II: The MIPS32® Instruction Set
MIPS Document: MD0086

11. MIPS® Architecture For Programmers, Volume II: The microMIPS32™ Instruction Set
MIPS Document: MD0582

12. MIPS® Architecture For Programmers Volume III: The MIPS32® and microMIPS32™ Privileged Resource
Architecture
MIPS Document: MD00090

13. MIPS® Architecture for Programmers Volume IV-h: The MCU Application-Specific Extension to the MIPS32®
Architectures
MIPS Document: MD00834

 References

262 MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00

14. MIPS® Architecture for Programmers Volume IV-h: The MCU Application-Specific Extension to the
microMIPS32™ Architectures
MIPS Document: MD00838

15. MIPS® Architecture Reference Manual Volume IV-e: The MIPS® DSP Module of the MIPS32® Architecture
MIPS Document: MD00372

16. MIPS® Architecture Reference Manual Volume IV-e: The MIPS® DSP Module of the microMIPS32® Archi-
tecture
MIPS Document: MD00762

17. Five Methods of Utilizing the MIPS® DSP Module
MIPS Document: MD00783

18. Efficient DSP Module Programming in C: Tips and Tricks
MIPS Document: MD00485

Appendix B

MIPS32® M6200 Processor Core Family Programmer’s Guide, Revision 01.00 263

Revision History

Change bars in the margins of this document indicate significant changes in the document since its last release.
Change bars are removed for changes that are more than one revision old.

This document may refer to Architecture specifications (for example, instruction set descriptions), and change bars in
these sections indicate changes since the previous version of the relevant Architecture document.

.

Revision Date Description

00.01 March 30, 2015 • Preliminary version for RC 0.0

01.00 January 12, 2016 • Release of document for RC 1.0

Copyright © Wave Computing, Inc. All rights reserved.
www.wavecomp.ai

